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Abstract

In rarefied gas flow problems there are two effectsa which influsnce
the flow; (1) collisions of gas molecules with other gas molecules, and (2}
collisions of gas molecules with solid surfaces (the gas-surface interaction).
This study deals with free molecular flow in which the effect of gas-gag
collision can be neglected and the gas-surface interaction has the dominate
influeace on the flow. The results of this study have applicaricn to gatel~
lites since free molecular flow conditions occur st orbital alzitedes above
120 km.

Knowledge of the gas-surface interaction isg required in crder to
determine the aserodynamic properties of satellites. Az satellite velocities

(7-8 km/sec) the interaction of neutral atmospheric gas wolecules with the

satellite surface occurs at energies in the 1 to 10 ev range. Tv s just

this energy range which has not been satisfactorily dupli.ated in the lsbora-
tory; therefore, at present, laboratory gas-surface intaraction data cas not
be applied directly to the determination of the aercdynamic properties of
satellites. It is proposed in this study that sstelliite experiments be
performaed to obtain the needed information frow measurements of the gero-

dynamic properties of satellites. In order to interpret the sa

zliite data,




a generalized gas-surface interaction model was developed and used in the
anclysis of this study.

Gas-surface interaction models such as those of Maxwcll, Schamberg,
and Nocilla, contain two or more parameters which may be adjusted to cover 2
certain range of possible gas-surface interactions. Although such specific
models may be used to develop the aerodynamic equations of satellites, the
validity of these models in this application has not been determined. The
results of this study show that the proposed generalized model is necessary
in the interpretation of measured satellite aerodynamic properties.

In the past, the interpretation of measured satellite aerodynamic
properties to obtain information on the gas-surface interaction and orbital
gas density has not been successful for two reasons; (1) the uncertainty in
the validity of gas-surface interaction models, and (2) insufficient data to
allow a determination of the orbital gas density and at least two gas-surface
interaction parameters. The results of this study illustrate strongly the
feasibility of performing a satellite experiment in which accurate data could
be obtsined on the gas density and gas-surface inceraction parameters by
measuring the drag, spin rate slowdown and spin axis precession rate of a
spinning convex satellite.

The results of the study on the aerodynamic properties of spinning
convex bodies have exhibited a number of interesting effects associated with
the spin of the body and the gas-surface interaction. For example, the drag
and lift of a spinning body was found to be greater than that of a non-spin-
ning body. It was also found that there exists a spin induced lateral lift

force which is analogous to the Magnus effect but is opposite in direction.

a3
i

= i e

bod

In addition, spin induced zerodynamic torques, perpendicular to the spin
axis, are significant on bodies at angles of attack to the flow.

The gas-surface interaction was found to have a strong inrluence
in determining the aerodynamic properties of both spinning and non-spinning
bodies. Both analytical and numerical results were obtained for the aero-
dynamic properties of four basic body shapes (disk, cylinder, cone, and
sphere) to study the effects of spin, angle of attack, and the gas-surface

interaction.
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1. INTRODUCTION

In the free molecular flow regime, intermolecular collisions may
be negiected and ﬁhe gas-surface intersction then becomes the dominating
influence in this flow regime. For earth satellites, free molecular con-
ditions exist at all altitudes above 100 mi (161 km.).1 It is therefore
essentisl that the effect of the gas-surface interaction be considered in
the determination of the aerodynamic properties of satellites.

At sateilite velocities, the gas molecules of the atmosphere im-
pinge on the satellite surface at velocities in the order of 7 to 8 km/sec.
Taking into account the molecular weight of the molecules composing the
astmosphere, the interaction energy associated with satellite velocities {s in
the range of 1 to 10 ev. Laboratory experiments using molecular beam tech-
miques have not been successful in duplicating these interaction energies.2
Therefore, the character of the gas-surface interaction at satellite velo-
civies and thus the effect of the interaction on satellite aerodynamic pro-
perties has not been determinaed. It has been possible to construct models of
the gas-surface interaction from physical principles and experimental results
obtained for interaction energies less than 1 ev. Such models contain two
or wore parameters which may be adjusted to include a certain range of pos-
sible interaction. It has not been determined, howevar, how well these
models approximate the actual gas-surface interaction rhac occurs in the
satellite environment.

The fact that aserodynamic properties of bodies in a free molecular

flow depend on the gas-surface interaction suggests that measurements of
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satellite aerodynamic properties could yield information on the peg-surface

interaction. However, measurements of satellite serodyna dreg bave bepe
inconclusive in determining information on the gas-surface interaction for
two reasons; 1) uncertainties in the satellite eavircmment; primerily, un-
certainty in the atmospheric density and 2} uncerteincies ls the serodynssmic
properties of satellites and, thus, in the interpretation of the messyre-
ments. Drag measurements really only determine the product of density snd
drag coefficients since neither is kpown separately.

The problems with interpreting drag messurements suggest that ap
additional aerodynamic property of a satellite should be measursd, such as
the slowdown} rate of a spinning satellite, which, when combined with the
drag measurement of tlat satellite, would provide & means of sepavating the
effects of density and drag coefficient or gas-surface interacticn. Anelvses
of this type have been performed on drag and spin rate decay dats for paddie-
wheel shaped satellites, from which estimates of the density and & gawwsur-
face interacrion parameter were obtained.B’4 These resulte are, however,

subject to uncertainties which are much the same as those associated with

drag measurements. First, since the measurements of drag aud slowdown rate

were a function of at least three unknowns (orbital gas densify and two or
more gas-surface interaction parameters), a value for at least one of the
uttknowns had to be assumed in order to obtain estimetes of vhe other two.
Secondly, since the validity of any particular model of the gas-surface inter-

action has not been established, the interpretation of measurements way be

made, as in Refererces 2 and 3, using a number of different models.
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Zince each medel used produces a different estimate of density, the experi-
ment iz able to determine only a possible range on the density.

The first point made above suggests that additional aerodynamic
properties should be measured in order to remove the necessity to make
agsumptions which can introduce errors in the interprctation of the measure-
ments. There are six aerodynamic properties to be considered corresponding
to three components of force and three components of torque acting on a
satellite; however, the properties must not only be measurable but must also
be independent functions of the quantities to be determined. The free mole-
culsr sercdynamic properties (drag, lift, and torque) of non-spinning bodies
are known to depend on the angle of attack of the body and the gas-surface
interaction (see for example References 5 and 6). For non-spinning satel-
lites, however, the effects of 1ift and torque properties cannot be easily
assessed because the orientation of the satellite with respect to the flow
is usually unknown and probably random. Spinning satellites, on the other
hand, maintain relatively fixed orientations in space. If the orientation
of the spin axis of the satellite is known, it is possiole to determine the
engle of\éfcack on the satellite with respect to the flow at any position
in the orbit. This suggests, then, that the aerodynamic properties of spin-
ning satellites may provide the measurables needed for determining the gas
density and gas-surface interaction parameters.

Past studies of the free molecular aerodynamic properties of
spinning bodies do not, however, provide a sufficient basis for proposing
a satellite experiment such as suggested above. The analysis of aerodynamic

torque on spinning satellites is usually made on an approximate basis

considering only the moments of drag forces about the center of masg of the
satellite (see for example Referenmces 7, 8) which, in general, do not give 8
complete understanding of the influence of the gas-surface interactlos.
More exact analyses of the aerodynamic torgques have been wmade in References
9, 10, and 11 for the case of a spinning spherical sstellite in which 1t was
found that the aerodynamic torque properties are gtyongly depsndent upon &
single parameter of a specific gae-surface interaction model.

The objective of this study is to analyze more fully the influence
of the gas-surface interaction on the aevodynamic properties of spinning
bodies and to propose satellite experiments to dccurately determine the gas
density and the gas-surface interaction.

In order to remove uncertainties introduced by a vaviety of pos-
sible gas-surface interaction models that can be used in such & study and
satellite experiments (second point made above), a generalized gas-surface
interaction model is developed which is designed to cover a wider range of
possible gas-surface interactions than models currently being used. The
generalized model contains currently accepted models as subclasses and has
the additional advantage of being able to incorporate lahoratory regults
and models which may be suggested in the future. The description of this
generalized model is given in chapter 2.

In chapter 3, the generalized model ls used to develop the equa~
tions expressing the aerodynamic properties of spinninrg aad noo~sploning
bodies in a free molecular flow. The results obtained may be interpreted
in terms of any of the gas-surface interacition models contained as sub-

classes in the general model. The aerodynamic equations are developed in




a general manner which makes them applicable to bodies of various shapes.

In chapter 4, resvlts are obtained for a disk (er flat plate),
cylinder, cone, and sphere for arbitrary angles of attack and for both the
spinning and non-gpinning cases. These results reveal the strong influence
of the gas-surface interaction on the aerodynamic properties of spinning
bodies.

In chapter $, the s2rodynamic properties of spinning satellites
is studied to determine the importance of the gas-surface interaction on the
average aerodynamic properties of satellites. These results suggest pos-
sibilities for performing satellite experiments. The random tumbling pro-
blem is also studied in this chapter.

In chapter 6, satellite experiments are proposed and the feasi-
bility of performing these experiments is investigated by assessing the
possible accuracy and the magnitude of measurable quantities needed to
determine the unknowns of atmospheric density and gas-surface interaction
parameters.

The feasibility of the proposed satellite experiment is enhanced
by regults obtained in a study performed by the Coordinated Science Lab~
cratory pertaining to the measurement of satellite precession rates which
could be caused by a general relativity effect. This study determined that
extremely accurate measurements of even small precession rates are possible
by using & completely passive optical readout techrique utilizing observa-

tions of sunlights reflected by the satellite surface.12’13

On this basis
then, it s proposed that for certain satellite shapes there are at least

three measurable aerodynamic properties (drag, slowdown torque, and

iy By
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precession torque) which can be utilized to determine more p
atmospheric density and the character of the gas-surface inte

satellite velocities.
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2. A GENERALIZED GAS-SURFACE INTERACTION MODEL

Insufficient information is available at present to warrant choos=
ing a specific gas-surface interaction model to represent the reflection of
molecules which impinge a surface at satellite velocities. For this reason,
a generalized gas-surface iuteraction model is developed such that it con-
tains varicus possible gas-surfece interaction models or subclasses includ-
ing the models of Maxwell, Nocilla U‘, and Schamberg 15.

The generalized model will be used in the development of equations
to express the aerodynamic properties of spinning bodies in subsequent
chapters. The resulting equations have the advantage that they can then be
interpreted in terms of any of the gas-surface interaction models contained

as subclasses of the general model.

2.1, A Generalized Model for the Interaction

Consider a stream of mono-energetic, uni-directional neutral gas
molecules impinging upon a solid surface at an angle of € with respect to
the plane of the surface (see Figure 2.1). Also consider that the molecules
are all reflected in a beam which is axial symmetric about an axis which
makes an angle e.1 with respect to surface, in the plane formed by the imping-
ing molecules and the surface normal (see Figure 2.1). The subscript, j,
on °_1 may take on values of 1,2,3---to represent cases in which the reflec-
tion can be modeled as being composed of two or more beams which are axial

symmetric about axes which make angles with respect to the surface of 31,

----- respectively. The purpose for adding the versatility of
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Notation used in the generalized model.




of using more than one reflected beam will be illustrated later in this

chapter. For the present, however , consider the beam in the ej direction.
Tn order to describe the gas-surface interaction, the following
three quantities must be determined about the reflected beam.

1. The velocity.

2. The angle of reflection.

3. The number flux.
incident beam properties

The relations of these three quantities with the

are described in the following three sections.

2.1.1. Reflected Velocity

In generzl, the velocity of individual molecules reflected from
the surface will be distributed in some arbitrary manner. The distribution
of velocities of a large number of reflected molecules could be, for example,
Maxwellien, or constant (no distribution), or any one of any numerous
possible distributions. For puiposes of calculating the force on the surface
in free molecular flow, however, the specific distribution of velocities is
not important since once the molecules leave the surface they do not again
hit the surface, and they do not collide with the impinging molecules.

Only the average velocity of the reflected beam is needed in
determining the momentum of reflected molecules and then the force on the
surface. Therefore, a vector velocity ﬁj is defined to represent the
average velocity of the beam of molecules reflected in the direction Bf

The velocity T, is also in the direction of ej since the beam is assumed to

be symmetrical in velocity uistribution about the axis at angle 95'

bod i b

10

In crder to relate the magnitude of vslocity U, with the magnitude

- 3
of velocity U (velocity of impinging molecules), a parameter aJ is {ntroduced
»
where
= U/l-orj 2.1
The parameter aj is defined in this manner to facilitate the

reduction of the generalized model parameters to the parameter of other

models. Equation 2.1 is equivalent to wr'ting
o =1 -—1 2.2

which is often referred to as the definition of the thermal accommodationm
coefficient. However, the designation of thermal accommodation coefficient
is rather vague arnd ill defined. The thermal accommodation coefficient, a,

is also often defined as

2.3

where T inci
i is the temperature of the incident gas molecules, Tr is the temper-
ature of reflecte
d molecules and TH is the temperature of the surface (wall).
If the temperatures are understood to represent the kinetic temperatures
3

and if Tw/Ti << 1 then Equation 2.3 may be written as

Tr
a=1l- T = = 2.4
i
The right hand side of Equation 2.4 is similar to the definition of @, in

i

Equat 5 i i
quation 2.2 except that Uj in Equation 2.2 represents the average velocity

in the di i i
aj irection while the velocity Ur represents the velocity sssociated
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with Tr’ the temperature of the reflected molecules. The operation in 1 -
- | 4
1 going from cemperature to velocity in Equation 2.4 depends on the distribu- { b
- L4 |
s,- tion function of reflected molecules and also on the definition of temper- -;
-
u ature. For the purposes of this study, Equation 2.2 will be used without ‘
;' reference to temperature. l i
1 [ e
u }
- gl
| 2.1.2. Angle of Reflection Y
The reflection of a beam of molecules from a solid surface was ! -
f . ien / A Diffusely Reflected
- rst considered by Maxwell to be analogous to the reflection of light 1 MoleoLles
1 n
S‘ from a surface. He postulated that molecules could be reflected elastically { | el
r= Vi
or specularly much as light from a perfect mirror, or the molecules could ! Ul\
reflect diffusively as light does from a rough surface (see Figure 2.2). \
\

Even though this treatment of the angle of reflection may be elementary, -» Q
the Maxwell model has found wide applications. = \\\\\\Q\\\\ \\ \

In 1959, R. Schambergls proposed a gas-surface interaction model aday

= M) =
A

which allowed fcr reflections at angles between the limits of specular and

diffuse. Schamberg postulated that the angle of reflection should be i

=)

related to the angle of incidence of the molecular beam.. As an example of

=]

such a relationship, Schamberg introduced a parameter, v, defined by

"
[ cos 8_ = (cos 8,)"; 1 |
e = (08 8)7% v> 2.5 |
[ where er is the angle of the reflected beam of molecules and @, is the angle |

e ) o

of incidence. In the limits of v = 1 and v = =, the Schamberg model reduces y i - Fi 2.2
| gure 2.2. Notation used in th
[ to the cases of specular and diffuse angles of reflection respectively T .
-
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Although recent experimental results using molecular beam tech-
niques indicate that Equation 2.5 is not in general correct, experimental
resulte do indicate that the angle of reflectien is a function of the
angle of incidence.(the experimental results will be discussed later in
this chapter). In order to include an angle-oé-reflection law in the
generalized model, consider the functional relationship between the angle of
reflection, ej, and the an&le of incidence, 8, to be in the form of a

ganeral polynomial of degree N. That is, let

N
n
ej = aj + nEI (bj)n ) 2.6

where a, and (bj)n: n=1,2,,,..N are constant coefficients.

3
Ag appropriate experimental results become available, the constants
aj and (bj)n can be found by fitting a polynomial to the experimental data.
Since appropriste experimental data is not now available, assume, as a first
approximation, that the functional relationship for the angle of reflection
ia lincar in @. That is, let

= 2.
aj a, + bje 7

which contains the two unkaown cunstants a, and bj' Unless there is a

i

systematic irregularity in the surface, the reflection of a molecule beam
which is incident normal to the surface (8 = g) should also be normal to

the surface (8, = g). Using this reasoning, one of the unknown constants in

3
Equation 2.8 can be eliminated to obtain a functional relationship dependent

upon only one unknown constant, P, where

s -
8j 2 Pj + (1 Pj) e 2.8

. o
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This form of the angle-of-reflection law will be used in later chapters to
illustrate the effect of angle of reflection on the aerodynamic properties

of convex bodies in free molecular flow.

2.1.3. Reflected Number Flux
If a solid surface is neither a source or sink for molecules, the
number flux of reflected molecules must equal the number flux of incident

molecules, The number flux of incident molecules, ﬁ, is defined as
N =2 3.3 2.9
m
vwhere p is the density of the incident gas, ; is the unit normal to the

surface, and U is the incident velocity with respect to the surface., If

all the molecules were reflected in a single beam, = N sn%"i-'ﬁ.

Nreflected

For the generalized model, a parameter ¢., is introduced which relates the

k]

beam, N , with the incident number flux.

3

number flux reflected in the @

3
Let

N, =¢,N=g, 280 2.10

3
For cases when all the incident molecules are reflected in the 91 direction,
°j = 1. For the more general case when the reflection is composed of J

symmetric beams having direction 91' 62,....,95,

J
T ogy=1 2.1
J=1

where J is the number of reflected beams.
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2.1.4, Parameters vf the Generalized Model

Three separate parameters have been intreduced which define the
gas-surface interaction in a generalized manner. The average velocity of
the reflected molecules is related to the velocity of the incident molecules

by the parameter @, where the magnitude of U, is given by

3 3

U_'] = U\/l-C!J 2.12

The velocity “j is a vector having direction defined by the angle of reflec-

tion 8,. As a first approximation, 61 is related to the angle of incldence

i
8 by the parameter Pj given by

I
=3 P, + (1-P .1
8, =3 By + (1-B) 8 2.13

3
The number flux of molecules reflected in the beam which is symmetrical

about the §, axis is related to the incident number flux by the parameter

3
cj given by
ml.lj-ch'ujp?J-;
where
J
jEI °j =1

and where J represents the number of symmetric beams.

2.2, Subclasses of the Generalized Model
For each reflected beam, the parameters cj’ aj, and Pj must be
specified to determine the force on the surface, By proper choice of these

parameters, the generalized model can be reduced to more specific gas-surface
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interaction models. This procedure is illustrated in the fqllauina three

sections for the models of Maxwell, Schamberg, and Nocilla.

2.2.1. Reduction to Maxwell Model

In the Maxwell reflection model, the reflection is divided into
two components, specular and diffuse. Define

;= fraction of incident molecules 2.14
vhich are reflected diffusely

(l-aa) = fraction of incident molecules 2.15
which are reflected specularly

The velocity of molecules reflected specularly is defined as being equal to
the incident velocity and angle of reflection is equal to the angle of
incidence (elastic collision with the surface) (see Pigure 2.2). For the
-diffusely reflected component of the reflection consider the velocity of
reflection to be related to the incident velocity by the thermal accommoda-

tion coefficient «,_, where

T
T, - T
JpE S 4
U =TT 2.16
i w

where Ti’ Tr’ and Tw are defined as in Equation 2.2,

The Maxwell model is obtained from the generalized model, as
follows.

First, consider the specular component of reflection and let this

be beam j = 1. Then, let



i I
' ' P 18
v i1
Let the diffusely reflected component of reflection be beam j = 2. ! I
I Then, let [
—— §
[ a,-aTorUZ-Jl-aTU;T&<<1 f I
=  §
- 2.18 : I
r g, =y | E | i /
=3 or py=1 | 7 / Axis of
! 2 Beam
[ The force on a surface, due to the impi t and subsequent | ¢ B
| i
[ reflections of the Maxwell type, is then | | -
¥ F=p03F @- o - 0,0, - e -
12~ 2% - A
‘ [ = o U5 (T - (L-ap) T - o 0, 2.19 )
} [ where LT1 = U having direction 6 and U, = Jl-czT U having direction g - Vi
i -
] [ 2.2.2. Reduction to Schamberg Model
i The Schamberg model already has much in common with the praposed > A
= 3 [ generalized model in that the reflection is considered as being in a beam’ - 7 o
m [ which is axially symmetric about an angle which is not necessarily in the | L
specular or diffuse direction. The principle differences between the two it
[ models is the manner in which the reflected velocity and the angle of reflec- )
tion are defined.
E In the Schamberg model, a specific form for the distribution of R
r velocity in the reflected beam is given. The velocity of reflected mole- Figure 2.3. Notation used in the Schamberg model.
\ = -
\ cules are assumed to be equal in magnitude but distributed in direction and | "1
3 _r number according to a cosine law within a beam width of angle ¢° (see Figure { i :
- e
2.3) given by I

U |
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n ($) =K cos @— . ID 2.20
o

where LW is the number of re-emitted molecules per unit time whose direction
of re-emission (relative to the axis of the beam) lies between ¢ and (@+dp).
The constant K is related to the number flux of reflected molecules and is
dependent upon vhether the reflected beam is two-dimensional (wedge shape)
or thrre-dimensional (conical shape).

To reduce the generalized model to the Schamberg model, the
average velocity of the reflected beam must be found. For a three-dimen-
¢sional conical beam the average reflected velocity can be determined from
expregsions derived by Schamberg,

Uj = §3(¢°)Vr 2,21
vhere §3(¢°) is defined in Schamberg’s 1959 paper, and V, is the magnitude
of the conatant velocity of individual molecules in the reflected beam.

The quantity §3(¢o) has @ maximum value of one for ¢° = 0 and a minimum
value of 2/3 for ¢° - g. The velocity Vr is related to the incident velocity
Vi (or U in the notation being used for the generalized model) by a thermal
accommodation coefficient, @, which has teen defined in Equation 2.2, i.e.

V= fl-a V 2.22
r i

Substituting Equation 2.22 into the expression for UJ in Equation 2.21, the
following expression relating Uj to U 18 obtained.
U.‘I = fl-a §3(¢°) i 2.23

Therefore, in order to reduce the generalized model to the Schamberg model,

the parameter o, must be defined as

3

Bord

., = Jlea .24
Vi = Jia 8, @) 2.2
The two parameters, & and ¢o’ of the Schamberg model are then reduced to one

parameter aj.
The angle-of-reflection law proposed by Schamberg is given by

cos ej = (cos o)’ 2,25

and was discussed briefly in section 2.1.2, A plot of Equation 2.25 for
various values of v is given in Figure 2.4, A rough approximation to

variation in ej as a function of @ for the Schamberg model can be made by

discontinuous linear relationships. For example,

*
g, = a +bja, for 6 <68

j i

= cj+dje, for 68> 8

2.26

For the Schamberg model Equation 2.25, the ej vs @ curves all pass through

the (0,0) and (g,%) points. Using this information, aj = 0, cj = % (l-dj).
%

Also, using the fact that at § = § the two lines intersect, Equations 2.26

reduce to

(1-d.) .
J s i 1 ¥
o +dJ]S for 8 < 0

2.27

j) + dje for 8 > B*

=3 Q-a
A one parameter family of discontinuous linear curves can be developed from
Equations 2.27 for a choice of a relationship between 6* and 8. This is
illustrated in Figure 2.5 where e* was chosen to occur along the line from

©, D to (g,O). The approximation illustrated in Figure 2.5 retains the

essential characteristics of the Schamberg cosine variation.
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2.2.3. Reduction to Nocilla Model

4 ;
Nocilla1 postulated that the distribution of re-emitted molecular
velocities be a drifting Maxwellian having 2 drift velocity of U, in the
direction er. The distribution function of reflected velocities is written

. o cu?

£.) = exp 'C ————ZRTr ] 2.28

(ZnRTr)%

where C {s the molecular velocity. Since number flux must be conserved at
the surface, n, can be related to the incident number flux. There are, then,
thres parasmeters remaining to describe the reflection, Ur’ er, and Tr'

Nocilla has shown that the model can be made to closely match the
distribution obtained experimentally by Hutlbutls, for proper choice of the
quantities Ur’ er and Tr' However, Nocilia doesn't propose an angle-of-
reflection law or a relation between the incoming and reflected velocities.
Therefore, in order to develop an interaction model using the distribution
function proposed by Nocilla, these relationships must be provided.

The Nocilla distribution function for reflected molecules has been
applied to the calculation of forces on a solid surface in free molecular
flow by Hurlbut and Sherman.6 Their results can be used to show that the
Nocilla model is a subclass of the proposed generalized model.

The force on a surface due to a reflection of the Nocilla type is
divided by Hurlbut and Shermen into components in the direction of the

incoming beam, Dr’ and perpendicular, Lr. (See Figure 2.6).

\ Normal Component
of Force

Uy~ Component of Force

Figure 2.6, Notation used in the Nocilla wmodel.
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2
n_mU
- XL 1% .
L [{ar x(e,) + 5 * (Lterf o)} sin 0
2m°s
T
- S_cos B [x(cr)} cos e] 2.29
L = ﬂrﬂurz [{ (o) + 1 n%(1+erf )} cos 8
T, g 2 oy x{a, 2 O
m°S
& -
+s_cos 8_ [x(g )} sin e_] 2.30
where
= E
S! Ur/(ZRTr)
o= =" sin zer 2.31
& E
x(e,) =e + mo_(lterf o)

1f the term X(ar) is factored out of Equations 2.29 and 2.30, and

if the expression for LA in Equations 2.31 is used, Dr and Lr become

nruur2 - n% (lterf cr)
Dr = 2ﬂ5sr2 x(at) L-Sr cos (8 + 9:’ + ZX(cr) sin a]
2.32
nrmUrz nlj (l+erf cr)
Lr = ; !s 3 x(cr) [Sr sin (8 + et) + ——m— cos e]
i

From these equations, it is apparent: that the vectcr force on the surface
due to a reflection of the Nocilla type can be divided into components
normal to the surface and in the direction of the velocity Ur. From

Equations 2.32

- nruvrz Er 23 n¥ {l4erf ct);
F - = y(g.) [-S '-'4'——_'] 2.33
reflection znkstz T r U x(cr)
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The outgoing number flux ﬁr is given by
- kT -k
- s
N =0, (Z—r-m “)* x()) 2.34

Substituting Equation 2.33 into 2.34 and using the conservation of mass

flux condition

Equation 2.33 reduces to

F -p THI-T =1
B sstection . P U L U+ G(cr) aj 2.36
where
(2RT_) =
a2t [.% .
G(Gr) ZX(UI) [ﬂ (l+erf arJ 2.37

In terms of the proposed generalized model, a reflection of the
Nocilla type can be considered to be composed of two beams, one normal to
surface and one in the direction of ﬁr' The parameter 9y is not needed
since conservation of mass flux is automatically satisfied by the two beams.
Let beam j = 1 be in the Er direction. Since one is free to choose

relationships for the Ur and ar’ let
= ,/1- =1 + (1-
Ut 1 ar U and er 2 Pr (1 Pr) (] 2,38

Consider beam j = 2 to be normal tu the surface. Then

U, = G(o,) = (o )ec, 2.39

where

W
e, = (ZRTr)
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then from Equation 2.37, define

ﬂ& l+erf o,

- I 2.40
)t o

Assuming the the velocity < is related to the incident velocity u by the

thermal accommodation ccefficient «,

c, = Je U 2.41
we can define the parameter @, as
.Jl-az = /I 5(0‘.) 2.42

The reduction of the generalized model to a model using the

Nocilla reflected distribution function is now complete. The model obtained

still contains three parameters; o, Pr’ and e,- This form of model serves

to illustrate some interesting characteristics of the Nocilla distribution

function. The forces caused by a reflection of the Nocilla type are seen to

have the character of 2 Maxwell reflection model except that, instead of a

specular

p t, a Ur P t is employed. Also, similar to the Max-
well model, the magnitude of the U_ component of reflection is seen to
determine, except for une parameter, the magnitude of the normal component
of reflection. The rormal component of reflection is analogous to the
diffusion component in the Maxwell model. Figure 2.7 shows a plot of the
coefficient of the normal component of the Nocilla distribution function,
Q(vr), as a function o, The term ar is equal to the product of Ur and
sin 9: divided by - From Figure 2.7, as Ur becomes large compared to cr,

the magnitude of the normal component becomes small. At er = 0, the normal

e r—

S

10
0.9
08

0.0 s

Figure 2.7.
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Plot of the coefficient of the normal component

4
Ur

5 6
sin 8, /¢,

RS-423

of force for the Nocilla model as a function of LA
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component ha: a maximum value of .89 e - Due to its dependence on sin Er,

the quantit’ g_ can not in general be assumed to always be large. However,
i 2

under the special conditions of Ur being much greater than <. and Pr greater

than zero (this condition on Pr insures that sin 9: and therefore o, will
not be zero), the quantity §(ct) may be assumed to be small in comparison
to the Ut component of reflection. Under these conditions, the Nocilla
distribution function resembles the type of reflection described by the
generalized model with the average velocity Uj repiaced by the velocity Ur

of the Nocilla distribution.

2 Incorporation of Experimental Results
2.3.1. Current Status of Molecular Beam Experiments

Molecular beam experiments have not as yet been able to obtain
results which could be directly applicable to the calculation of forces and

torques on a satellite. The major limitation in molecular beam experiments

is the inability to produce a neutral molecular beam of sufficient intensity

and at a velocity which corresponds to the velocity of impingement of
atmospheric molecules on a satellite in near earth orbit. In terms of the
energy of interaction, the range of 1 to 10 ev corresponds to that which
occurs in a near earth orbit. Interaction energies below 1 ev have been
obtained by aerodynamic methods such as expansion of a high pressure gas
through & nozzle. On the high energy side of the 1 ts iU ev range (10 ev
and above) neutral molecular beams have been obtained by the method of ion
acceleration with subsequent neutralization hy charge exchange techniques

(see for example Reference 2).
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Although the energy of interaction is of primary importance in
determining the character of the gas-surface interaction, other factors
such as the satellite surface conditions and composition of gases incident
on the surface are also believed to influence the interaction. The major
limitation in duplicating these factors in molecular beam experiments has
been that satellite surface condition and atmospheric composition remain
uncertain.

As can be concluded from the above discussion, available ex-
perimental results are probably not applicable for determining accurately
the values of the gas-surface interaction parameters for the calculation
of aerodynamics forces on satellites. However, molecular beam experiments
outside the 1 to 10 ev range could for example suggest the form of the eJ
vs @ relationship, or, indicate trends in the character of the interaction

which could be extrapolated to the 1 to 10 ev range.

2.3.2. Incorporation of Intensity Distribution

The majority of experimental work is aimed toward obtaining
information on the distribution function of reflected molecules because
all other flow properties can be found from the distribution function,

For application to calculating forces on convex satellite shapes, however,
less detailed information can be used since the actual form of the distri-

bution function is unimportant. The generalized gas-surface interaction

model developed in section 2.1 suggests the type of experimental data

which would be most useful for satellite application. For example,
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distribution of reflected intensity provides information on the number of
beam components (single lobed, J = 1; bi-lobed, J = 2; etc). Also, inten-
sity distributions obtained for various angles of attack to the incident
beam reveals characteristics of the ej vs 8§ relation. As an example, the
experimental results of er vs § for high velocity argon beams on heated
platimum obtained by Moran, Wachman, and Trillingl7 are plotted in Figure
2.8. These results show that as the beam velocity increases, the para-
meter PJ (using the first approximation for the 8 relationship) approaches
zero. These results show a slight departure from a linear relation in er
vs € at low incidence angles. The departure is opposite to that postulated
by Schamberg's (see Figure 2.4) cosine powered relationship.

Overspecular (aj < 8) and backscatter (ej = g) results can not
be reproduced in the Schamberg or the Maxwell model. Such results are,
however, easily incorporated into the generalized model. For example,
backscattering results could be approximated by a linear relation by
allowing Pj to take on values between 1 and 2. Overspecular results and

over-backscatter (9j > m - 8) could be approximated by 2nd or 3rd degree

polynomials or by discontinuous linear relations. These regions are

indicated in Figure 2.9 with examples of the possible angular relationships.

2.3.3. Incorporation of Force Measurements
Force measurements made on flat surfaces at angles of attack to a
molecular beam can yield considerable information on the gas-surface inter-

action and the results are particularly suited for analysis in terms of
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Figure 2.8. Comparison of experimental datal7 with the first
approximation to an angle-of-reflection law of the
generalized model.
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the generalized model. Since the force on the surface due to the impinge-
ment can be obtained from measured beam velocity and intensity, the foirce
due to the reflection of molecules can be directly obtained. Therefore,
the magnitude and direction of the reflection force can be determined to
yield information on the ej vs O relationship and also the value of UIJI;;;'
In order to properly analyze force measurements in this manner, however,

it is necessary to know the number of beam components which make up the
reflection. Experiments set up to measure forces are not usually set up

to measure the distribution of intensity which could reveal the number of
beam components. In the absence of such information, special measuring
techniques carn be employed to obtain the desired information from the force
measurements. For example, the technique employed by Borirz and Eumphrisle
to obtain reflected force in the directions normal and tangential to the
surface can be extended to obtain measured values of the reflected force

at angles between those two limits. The results would reveal the lobal
maxima of the beam components and thereby yield information on the ej

relationship and the quantities chl-aj.

2.4. Significance of the Proposed Model

The generalized gas-surface interaction model developed in this
chapter was shown to be raducible to three currently accepted gas-surface
interaction models. Xn addition, the generalized model is found to be

applicable to approximating a wide range of possible gas-surface interaction

by including the possibilities of over-specular and backscatter reflection.
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The generslized model is found to alsc be useful in the interpretation of
laboratory experiment results, as illustrated in Figure 2.8, in order to
iudicate trends and similarities in laboratory data.

The generalized model described in this chapter has incorporated
1) the cffect of the angle of incidence on the angle of reflection and
2) the effect of the incident velocity on the reflected velocity. These
are undoubtedly the major factors influencing the gas-surface interaction.
Additional factors, however, can readily be incorporated into the gen-
eralized model. For example, the velocity of rellection could be considered
to be & function of the angle of incidence as well as a function of the
incident velocity. This effect is, in fact, incorporated in the results
obteined in the reduction of the generalized model to the Nocilla model.
The generalized model could also be extended to include the possibility
that cj and QJ are both functions of U and §. Although refinements such ae
thege will not be included in the application of the generalized model in
the work which follows, they may be incorporated whenever wirrented.

The generalized model employs three parameters Gj’ «., and P,
for ecach beam of the reflection. The two parameters Gj and @, determine
the magnitude of the force due to the reflection and the parameter Pj
derermines the direction of that force. When using the generalized model,
as will be seen in the following chapters, the quantity chT:a; can be con-
gidered as a single psrameter in place of both gj and .. That is, speci-
fication of the two quantities chETZ; and Pj are sufficient for determin-
ing the force and torque acting on a convex body in a free molecular flow.

In the analysis of subsequent chapters, the geaeralized model
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will be employed in the development of equativns which express he aere

dynamic properties of bodies in a free molecular flow.
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3. BASIC AEZRODVNAMICS BQUATIONS

The generalized gas-sirface interactios model i» applied in this
chapter to the development of the equations for expressing fo~ce and torque

scting on spinoing bodies in free molecular flow. The resultingy equations

ho e wide spp!ication since tley cam be iaterpreted in terms of many specific

models,

The equaticns for drag, l1ift, aud torque are obtained ia differ-
entisl form for fomr body shapes in particular (disk, cylinder, cone, and
sphers). The resulis will be used in the oext chapter to study the effects
of spin and the gas-surface inceraction onm the sercdyaa=ic properties of

bodies of these shapes.

Ak, Bepic Fquecices of Feccs s2¢ Ivigoe

Consider s surfsce cloment, &L, on & spinuing body If the posi-
tive normel of thet elemes: of surfsce is n, the zass flux impinging on the
surface i»s

szt -z a

where p s the densicy ol the free siresm gas 3ad T is the vector velocity
of the Lneldent flow relat . ve to The surface. The welocity ¥ is sssumed to
be much higher thae the therms! mwtios 3¢ the frec sizean gas so thst ram-
l;- fluetuations in the wwilecity €35 bo segiected (hypothermal sssumplion)
The mans flux ls & posifive suniber since the gusetity (F3) must slusys be

negative .n ovder for selecslos to %z the serfacs ™e wector forge oa (ke

suriace due ta the leplagement of molséuies ie gives by

e~ S

bod  bmd bowd eed i e el bed  fewl e

bomd

i

o e bewd

(a)lucident = U(-p U-n dA) 3.2
where che notation dF is used to demote the force on the surface area dA.
Using the notation introduced in the precedinz chapter for the

generalized model, the vector forc: due tc the reflection of molecules is

given by

) frection = 0y Ty (503 @A) 3.3
where the minus sign is required because the vector velocity EJ must be in
the directicn away from the surface. For cases in which the reflection is
composed of more than one beam component, the force due to the reflection
is given by s

(eF)

= -0y, +oyl, + oo + 070 (-o0-R) A 3.8

reflection 171 22

wvhere J is the number of beams making up the reflection. Since the re-
peated subscripts can be used to imply the summation, Equation 3.3 will be
use in the development of equatioas which tollow

The total vector forc: on the clement of surface is the sus of

force due to impingezent and force due te reflection glvea by

5--(E-ciﬁ‘);i-na 3.5
Consider the element of surface dA to Be at & polnt dufimed by

the radius vector, K, from the ceater of a coerdisate yystem atiached te

the body. The vector torque, lf about the center of the centdinate systes

coused by the lmplagement and reflectlom of mwleeules oo the slement of sur-

face dA i3 then

.
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4T = B (T - cj‘l'l'j) s Tn 3.6
Equations 3.5 sad 3.6 form the basic e-urtions necessary for l
determining the force snd toryue on a coavex dody in free molecular flow. {
[
These egustions are not applicsble to concave body shapes which allow H

bood e by e bd e beed e e bl Ged ew G OGN

molecsles reflected from one pact of the body surface to impinge again on R
—

ol

ine body. |
3 !
for s Clags of Spinmning Body Shapes

For spianiang bodies, the velocity of impinging molecules with

24

respect to the surfsce clements depends spon the spin rate and position of

the surface elament with respecz to the spla axis. Llet L‘_ be the free

-
stream velocity sad let the spiz rate of the body be defined by a spin \

vector, 5 The vectoer velecity of i{mpimging molecules with respect to any

D)

point on the surface exposed to the flow is then given by

-T - D% 3.

~

whete R Ls the radise vecter {rom the cester of & cooréimate system attached |
to the dod; (swe Figere 3 1)

The reflecteod velscity vectss, ‘? . is also dependent wpon position

06 the suvface snd <pis rate since the ma®r!trde and &irection of U (s
)

+

[—

velated o Ihe mago (Tode _odt 17 ctlimm o' The

=1 velecity U through

the parameters latgadecs: Lo . ow gesersl e sl For a giver body shase

Figure 3. 1. Vector positiva of surfaie eleme s the flow
(within the cisss of remveys shopes) (e wvolocify veoter U, ven be wiittex in

tevma of the seeturs 7, o, . a0l B asd The spprepriote gas-serfage Llater-

L

g- a¢tlon parameters Vor syample cwnsiber i%e rlazs of budy shapes wiich
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have circular cross section at any point along the spin-axis. For this

class of body shapes, 3 local uait tangeat vector, -r', caa be defined as

ool 3.8
[=a]
where [:’}1&. represents the magaitude of the vector quantity 5’&.

Since n is the local unit sormsl vector to the surface element

dA, s third unit vector, 2, can be defined to form a triad.

‘@ 3.9
|3a]

jfe <3

men

The unit vector @ s alss locally tangeat to the surface. Consider now that
the incident weloclity vectorc, ? has component '.‘__.I.‘.,L'g in the directions of

r.,!.:, respectively. That is, let
T = 3.10

Also. ler T, b defimed iz txis cocrdisate systez as

]

T - Tr(e,) me(T) = 3.11
' 2 s 1=

11 the angle § represents the axgle of incilemce with respect to the surface
plane (wre Yigere ] 3, . the composents of T sre given by

* T ce3 § cos ~

whare U (¢ the asgaitwbe »7 ¢ Lent e sand v ls the sximeth angle

of lneldonvs Jefised is Fogete 1 32
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n. Therefore, using Equaticn 3.7, the following

Uen = \‘:m -
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{1lustrate the application of Equation 3.19. The results wili be analyzed in
the following chapter for specific values of the generalized gas-surface iater-

action parameters.

3.2.1. Coordinate §1|§!=‘s

Two coordinate sysiems will be used in the development of equations
for the disk, cylinder, cone, and sphere. The two Coordinate systlems which
are the same for each case ate delined as follows.

Consider first 1 coordinate syste= (x,.y,2) which is attached to the
free stream velocity wvector, ?. The positive y axis will always be defined
toc be In the positive E- direczion Consider row a body having a spin vector

..‘ Let & coordinate system n ey ez ) be defined in which the z' axis is

alwayr La the direction ! 2he spin vector E Furthermore, coasider the z,
axls ) be Lnittially inclined a2t az angle i' with respect to the z axis of
the x,y,2 coordingte systiewms a~d in the x-z plane Alse consider the x’ axis
tn be (nitially cwllineas with t:e a axis The coordinate systems are shown
Lo Flgure .3

The A Py Smd & reevdisale aystem szevciated with the body iy not
@ Lot atating systew w.th Ihe Sedv Oalv the ¢ arils (2 rigidiy attached to
the spinalng Beds by slways beimg .7 e Sifeciios of the spis rafe vector :
The L and y, wils tomila i [ 3. spate 3s the Yoly Totates, =o
forques avt on the Sed M| - ndy i3 sele esternal terquer, the
~".lnl v axls will rolate 20 & fomsts e! the precons. o rale sauseld by
the external corque Var caves s W B othe fiow rifesn wveioclty veltor ls

.
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fixed in inertial space, che (x,y,z) systea is an inertial system and the

two cocrdinate systems are similar to those which would be set up for the

clap~ical top ptnbltl.19 The case for which -ﬁ_ rotates in inerctial space

(such as for a body in orbit) is taken imto consideration in a later chap-

ter Ly referring the results obtained using the coordinated systems i

defined above,by 3 coordinate transformation, o a true inertial reference.

The component of force in the y direction will be referred to as

the drag component while the x and z components of force will be termed
(ufc)“ and (lttt)z. In terms of the components of force on an element of

surface, the vector forre {s given by
4F = d(life) L+ d(drag) § + E(1ifD) K 31,22

where 1,,% are the unit.vectors aloag the posiiive x,y,z axis. The dif-

ferential notation is used To denote the vector force on the elemeat of

area, dA.
The wector tovque iz .vided iz°D components along the L

5, axis. The componeat o loTque . .on§ the LI is termed slow-down

torque, r.‘ The LA and : vomponer Ty o{ Torque are pe-pendicular to the

spln axis and are desoted by T, wnd . The vector torque €7 is then
» ‘s
glven by
ST o (T, )t & T § e 4T ) m 3.23
l * ! s " :
. L] s
where .| .h1 are the wa't weslers ale=g the pasitite 3 z axis
The surface element .. sf che bady is 57 & psing lefimed "y the
cadius vector R from the cenies .§ she comgllsste syscems 1o th

e

L e e iR
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subsequent development, cyli
ndri
Y » Cy cal coordinate: about the z, axis are em-
ployed in which an angle € is defined as measured from the positive x_ axis
[}

to the projectio 53
j n of R onto the X Ye plane (see Figure 3.4).

3.2.2. Spinuing Disk Angles of Attack

A disk spinning abcut the surface normal {s in the class of body
shapes for which Equation 3.19 is valid. Consider a circular disk of ralius
Ty with spiu vector (3 normal to the surface at the center of the disk. Fig-
ure 3.5 shows the disk with the centers of the coordinate systems, defined
above, at the center of the disk. The following vectors are required to

£
ind the force and terque components acting un the disk. Referring to Fig-

ures 3.3, 3.3, and 3.5

U, =UJ =U_ cosaj

- ss

G=ak,

- 3.24
R-r:os;xs+:,g-;1’

aomk

whi I
ere r {s cthe distance from the center of the disk to the surface element

dA vhere dA is given by

dA = rdrd
rdeds 3.28

The angle 8 must new ¢terninad Sov wse (0 C sven by wation
1 t be det i E E L 0
sinad £ Y [ by Bquay 3.2

and S’ given by Equation J 21. Since

CaeU sin e

1.26
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Figure 3.4.

49 3

Zg n
dA
-
R
N >l
\\\\ ///’
N 1
5 o
~
\
\ |
£ \
Ys
RS-430

coordinate system.

Orientation of surface element in the body

[P

[ YO N S—

v

Lo B o T e I I s I S I B o B . D T

4

+

9

RS-434

Figure 3.5. Spinning disk at angle of attack.
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= 1 -a
- -1 [U.n7 _ -llm:l
8 = sin [ T ] sin " 3.27
Using Equation 3.24, § becomes
U_sin §
8= sin_l E - = &] 3.28

(UZ + rznz - ZUe rQ) cos € cos es)

@
Define a non-dimensional quantity, Kd’ as the ratio of the peripheral speed

of the disk to the free stream velocity, U;. That is, let

K, & —== 3.29

where T4 is the radius of the disk. Define, also, a non-dimensional variable

r’ as the ratio of the variable r to Ty That is, let

i B ‘ 3.30

Using Equations 3.29 and 2.30 in Equation 3.28, 0 becomes

- sin @
6 = sin 2 [ 2 2 = k] 3.31
(R )" - K, r’ cos € cos E)

Substituting Equations 3.24, 3.25, and 3.30 into Equation 3.19 for dF and

taking components alovg the x,y,z axis, the following results are obtained

d(drag) = D, dr’ dg [r'(l-cj) - Kd(r’)2 cos g cos § (1-cj)
+r'sin g_(C, + 5] 3.32
s dJ b}
’ 153
d(lifcz) Dd dr’ dg [-Kd(r )~ cos E sin es (I-Cj)
,
-~ ¢ sig 8 cos es (Cj e Sj)] 3.33

52

d(l1fe) = b, dr’ dg [K,(r )% sin € (1-C,)] . 3.3

b

where

2

2
Dy = pU sin g 7,

d

cos 3

Cj = Uj“/l-aj cos B

sin @
S5 = opl-ay oo

and where § is defined by Equation 3.31

Similarly, the components of torque ave obtained, given by

AT, ) =D, )] 3.35

dr dg [-(c)? sin € sin B (145
s

d i

- £ e w152 e AF

d(Ijs) Dd LA dr’ dg {(r")” cos € cos e5 (.*SJ)J . 3.36
CRELNS dr’ ¢g [(z)% cos € cos o, (l-Cj)-Kd(r')a(l-Cj)] 3.37
» S,, and § are as defined above.

b S |
Equations 3.31 through 3.37 are the basic equations expressing the

where Dd’ (5
force and torque on a spinning or non-spinning disk. In chapter &, these
equations will be evaluated for specific cases of the gas-surface interaction

model.

3.2.3. Spinning Cylinder at Angles of Attack

The orientation of the spinning cylinder witk respect to the x,y,z
and XY g2y coordinate systems is shown in Figure 3.6. The cylinder of

length L is spinning about the axis of the cylinder. The center of the

coordinate system is placed at the geometric center of the cylinder. The
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l followirg vectors are defined

l - I U =U_ cosgj ~-U sine, k

r Ei i,
\ - B, 3.38
: ? ‘; R-rcycoagis*'rcy singjs"'l,ks

i n-cosgis-i-smgjs

where rcy is the radius of the cylinder and £ is the variable of integra-

- tion along the axis of the cylinder. The element of surface dA is given
¥ 3 by
o i dA = rcy de de 3.39
r = From Equations 3.38, the angle ¢ is found to be
- -
-cos 8 sin
'K » 6 = sin L =

Y 3.40

2 a
(I-Q-K‘:y - Zl(cy cos € cos s)

- where the non-dimensional spin-rate parameter Kcy is defined as
- ., 0
r P 3.41
- cy U
©
: -

The variable of integration £ appears only in Equation 3.39 above.

The equations for the cylinder can then immediately be integrated with

respect to £ from - % to +%. The variable € still remains, however.

RS-452

Letting
- D _=pU g r Lcos 8,
Figure 3.6. Spinniug cylinder at angle of attack. <y ® ey 8
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i Tke resulting basic equations for the cylinder are found to be
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d(drag) = Dcy d§[~-1n 4 (I-Cj) + Kcy cos 8, sin € cos € (I-CJ)
2 3 '
- cos e! 8in’g (Cj + SJ)] 3.42
d(uige) = e [xcy sin 8, cos § sin € (1-C,)
- cos g sin 6 sin’€ (C, + S )] 3.43
s ] i i
2
dQige) = de [-xcy sin’g (1-C))
9 2 il
- cos 8 cos € sin"g (Cj + S,)J 3.44
d(T, ) = D__.T__ dE |sin 6. sin’E (1-C,) | 3.45
Js cy «cy L 8 % 3
- . -cH)?
d(TJ.) Dcy oy dg [lin 8, cos € sin £ (1 CJ)J 3.46
am, ) =D dg [xcy sin € (1- )
+ cos 0. cos § sin € (1-01)] .47

where Cj and Sj are as defined previously.

The surface of the cylinder expused to the flow is from § = n to
2m at all angles of attack except 9. - g and - g where none of the surface
is in cthe flow. Equations 3.42 - 3.47 are the basic expressions for force

and torque on a spinning or non-spinning cylinder. These equations will be

evaluated in chapter 4 for specific cases of the reflection model.

3.2.4. sSpinning Cone at Angles of Attack

A cone having half angle §, height Hc. and base radius £ is
shown oriented in the x,y,z and X YgrZgn coordinate systems in Figure 3.7,

The center of the coordinate system is at the center of the base of the

S T —— -

s e e o s aid Nt A 5

SRR,

- e s

| /7N ——‘0100 4 41 b |t s

bed i Y

[ | 4

frod  dwd v e

O
N

Figure 3.7. Spinning cone at angle of attack.
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sene, The cone ig spinaing awout the axis of the cone. The following vec-

sors are defined
U oy \l‘se -~ U sing k

Q= ks

Ro= £04) con € 4.0 £04) odn § J o £ K,

B = cos g com & 5..é + gin € cos § Js + gin & k8 3.48

where & is the varisble of integration along the axis of the cone and £(4)
i3 the redial distence of the surface dA from the axis of the cone. The
distance £(2) Lu given by

H -4

O R
[~

The element of surfaece dA i glven by

an = ELL gg g
cos &

The sngle & is found, using Equation 3.48, to be given by

ain es gin &6 ~ cos Bs gin § coe b

sin § = 3.49

(a+ whH? R - 207 Kk con g con eg)ggi

where Kc is the non-dimensional spin rate pusrameter defived as

foind Gty G S

]

]
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Latting
4
2 [ A
Dc 4 Uw sin &

“he basic equations for the cene become

3
adrag) = B dg A2’ [-z’x(x - e+ (80 eon §cos 8 (L €

PN 1 Pr ]
X" A (Lj * Sj)j 3.5

aiige) = b dr at’ [xxc (2% cos € sin B, (1C,)

-xz 4’ (sin & cos o,

+ gin % cos b sin Eg)iﬁj ks Rj>§ 3.51

a(iigr) = D4y dr’ [‘XKC % sine - ¢

-xz cos € cos & & {Ci £ 35} 3.52

1
4
i . "2 . o
LORREERLE (xe? stap, stn g Cocp)
44’ (1-4) cot & cow g, (1L
o

x4 ety et b cos ¢ (150D

+ xz(g(},’)z sin b pin €

+ £/(1-£") cot 5 ming cos $1(C, $§)§ 3.53
* & e

-
4, ) = D, dg b’ [, (10PL) ot b ein £ (1Cy)
&

&
X

§
N2 o )
~%x{2 )" sin 8, coe g0

“xzil(l - 4') cot § cos £ cop § &, + 8.3

*xz(x’)z sio § cos & (G; 4 8, | T4
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ax, ) = Dx, ag a8’ Lok, 69 - x8"? cos o, cos ) (1-¢)]  3.55
where

X ® cos es 8in € cos § - sin es sin § 3.56

The surface of the cone exposed to the flow is a function of the
angles Bs and §. At es = 121, for example, the entire condcal surface is ex-
posed to the flow (§ = 0 = 2n). In fact, for all values of ’ia between 321 and
g- &, the entire conical surface is exposed to the flow, An angles of 96
i;e:uwn (— Izl + 6), decreasing ampunts of the conical surface is exposed to
the flow. The shadow boundary for the flow on the surface is always a
straight line and can be found in terms of the variable, &, by finding where
B2 = 0. Define the angle, 8, to be the.value of € at the shadow boundary.
Then,

B = sin ! (tan @, tan &) 3.57
8

gxm Bquation 3.57, the following three categories of surface exposure are
defined,
Cagse I: tan e_s tan § = 1
Entire conital surface (§ = 0 - 2n) is exposed to the
flow.
Case II: -1 g tan 95 tan § € 1
Only part of the conical surface -
€= (n=-B)~ (2n+B)
is exposed to the flow.

Case IIL: fan §  tan §<-1

J

O e ol

69

No part of the conical surface is expozed to the flow.
(The bage of the cone having not been included in the

besic equations for the cone).

3.2.5, Svinning Sphere at Angles of Attack
A gphere of redius r, is shown oriented with respect t¢ the x,y,z
and KgrYgrZg coordinate systems in Figure 3.8. The spin axie is along a
dismeter of the sphere at an angle (g-es) with respect to the free stresm
velocity. Cylindrical coordinates are used to describe the position of the
surface element dA, With gdenoting the variable length along the spin axis,
aA is m.ve;l by
A = ry dg dz
The following vectors are defined
{!u = U‘ cos es js - “,, sin eB ks
Q=0 ka
iﬂMmﬂ%+MHm%+% 3.58
]
;-E‘Qcosgi +L(‘£)'ain§j +§—k
T 8 r 8 t_ 8
5 8 s
wvhere r(£) is the radial distance from the spin axis at the point 2 to the
element of surface dA
2 5
() (rs - i,z) 3.59

The angle € is obtained from Equations 3.58 as

.
£’ sid 8, - £, sin € cos g_

7.2 3
(1+£‘.s K . I.s cos € cos es)

sin § = 3.60




d(life)) = D_dg dg’ [Xkgtg cos § sin 8, (1-cj)

st (4’ cos es + Ls sin § cos QB) (Cj+s_1)] 3.62
X,Xs RS-453

d(lifc ) = D_ dg dL [-xs k4 sin § (1-cj)
2
=K £, cos g (Cj+SJ)] 3.63
d(Tis) =D r_dgde’ [, sin g sin €

Fi .8. i 1 5
igure 3.8. Spinning sphere at angle of attack ) Ks ths a4 con gs] %, (1_CJ) -

61 I 62
| b |
i [ where Ka is the non-dimensional spin-rate parameter defined as
4 |
i rQ
I ' i -t
§ ‘ Ks U,
l { F and 4’ is a non-dimensional variable of integration defined &
{ |
{ | r ol
| " 2y
i i °
l I and
s 2
[ i 2, = (-7
Letting
2 2
l i Ds =p Um rs
! The basic equation for the sphere becomes
.
‘ d(drag) Ds dg de [xs (-1 + Ks 4, cos. € cos Qs)(l Cj)
- %2 8] 3.61
[ s b i |
1
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d('l:js) =D r dgds’ [-4 sin 8, cos £ - K_ z’zs sin €] x, (1-cj) 3.65
4T, ) = D r, dg dg’ [K 452 - 4, cos g cos es] % (I-Cj) 3.66
8
where

’ :
xs !'s cos es sin § -~ 4 sin es
The shadow line of the flow on the surface of the sphere is a
curve in the £’ -  plane. At a constant 4’, the shadow limits in terms of

€ can be found by finding where 6; = (0. Define the angle ES to be the value

of € at the shadow boundary. Then, Bs is given by

/
B, = si.n_1 (tan g 4

s £
s

For arbitrary values of es’ the shadow determines three regions of exposure

along the spin axis. Referring to Figure 3.9
Region I: tan 8 fj 51
In this region the surface from § = 0 to § = 21 is exposed to the
flow

’
Region II: -1 < tan es f‘ <ul;
s

In this region the shadow limits are, at any point, 4, from

E=m- B, tog=2n+p .
’
Region III: tan b, i—- <=1
8

This region of the sphere:is not exposed to the flow.

—
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Figure 3.9.

Regions of sphere surface exposed to the flow.
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3 Applications

The equations which have been obtained for the four basic shapes
of the disk, cylinder, cone, and sphere are applicable to a wide variety of
problems. In the next chapters these equations will be used to evaluate the
effects of spin rate and the gas surface Interaction on the dynamic pro-
perties of these shapes in free molecular flow. The application of the
equations to other problems is discussed as follows.

Many satellite shapes can be simulated by a combination of the
four basic shapes of the disk, cylinder, cone, and sphere. If the satellite
is of convex shape, the basic equations developed in this chapter can be
applied directly. Since the equations: are in differential form, they are
equally applicable to bodies composed of segments of the sphere (such as
spherical caps), cone frustrums and segments of the cylinder and disk.

Surface properties affect the character of the gas-surface inter-
action. Many satellites are composed of surfaces which have widely differing
surface properties such as solar ‘cells versus painted surfaces and varying
surface temperature or roughness. Problems cf this type can be studied
using the equations developed in this chapter by assigning different values
to the parameters of the gas-surface interaction model for a specific region

of the surface.

St
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4. AERODYNAMIC PROPERTIES OF SELECTED SHAPES

In this chapter serodynamic properties of selected shapes are
evaluated from the expressions developed in chapter 3. For the special case
of the Maxwell model, results are obtained to illustrate the effects of spin
on the aerodynamic properties of the four basic shapes of disk, cylinder,
cone, and sphere. Analytical results are also obtained in terms of the
generalized model parameters for drag of the four body shapes with zero spin.

In general, the aerodynamic properties must be evaluated by using
numerical methods. The numzrical techniques employed in this study are out-
lined in this chapter and results obtained for various values of the gen-
eralizcd model parameters are presented. These results are compared with
those obtained for the special case ol the Maxwell model.

In the next chapter, the results obtained for the cone and disk

are applied to the problem of a satellite in near earth orbit.

4.1. Special Case of the Maxweil Model

The reduction of the generalized gas-surface interaction model
parameters to the parameters of the Maxwell model was demonstrated in
section 2.3.1. Those results can be applied to determining in terms of
the Maxwell model parameters che quantities Cj and Sj which appear in the

basic aerodynamic equétions developed in chapter 3. For specular reflec-

tion,
cos 6
= — i i
Cj Bleﬂﬂj P 1 oy
sin 6, 4.1
sj = ajjl-aj ;T;—El =1 -,
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For diffuse reflection,

C, =0

J

o 1
Sy =egl-ay T3
Combining diffuse and specular reflection, the values of CJ and Sj in terms

of the parameters of the Maxwell model become

(Cj) =1 - oy

. 4.2

1
(SJ)m =1 - oy + ar/l-aT sin §

In the basic aerodynamic equations, the following functions of C, and §

J j

occur repeatedly. In terms of the Maxwell model parameters, these functions
are given as

1- (Cj) = o

m

d

(Cj)m + (SJ)m = 2(1~ad) + d‘/l-aT Sin 6 4.3
= 1
1+ (SJ) =2-a;+a, Jﬁ-aT 515 6

m

The equations for the disk, cylinder and cone could be integrated
aralytically except for the terms containing (sin e)-1 which appear in Equa-
tions 4.3.

The angle of incidence of the flow, ®, is a function of the spin-
rate and position of the surface element dA as discussed in chapter 3. For
the four body shapes studles, the expressions found in chapter 3 for sin §

for each shape are all of the following form

e . T e — T T g

sin 9 = A [1+ K2%d% - 2xd cos € cos 98]-)’ 4.4

where Table 4.1 gives the values for A, K, and d for the four shapes estudied
in chapter 3. The terms K and d are non-dimensional where d represents,
except of the case of the cylinder, a variable of integration which may have
a maximum value of one or less. The spin rate parameter K is the ratio of
the maximum peripheral velocity of tae body to the free stream velocity U‘.
For satellite applications, K s always less than cne as can be determined
from the values for K given in Table 4.2 for a number of past satellites.

Since K <1 and d < 1 for satellite applications,
2% - 2kd cos 8, cos )7 < 1 4.5

and (sin e).1 can be exparaed in a binomial series as an approximation to
the dependence of § on spin rate and surface position. The result of the
expansion is

1

(sin 8)~ “’Xl (1 - Kd cos 8 cos § +% ®d)? (1 - :cszes ces? €)

+ oxa)’) 66
where terms of order (Kd)3 and higher are not to be retained. Substitut-
ing Equation 4.6 into Equation 4.2 for CJ and Sj of the Maxwell model, the

fcllowing results are obtained

(Cj)m =1~

d
— -1
(Sj)m =l-a, + “@/1"’& A [1-Kd cos B cos € 4.7
+5 KD (1-cos® 8 cos? £)]

Equations 4.7 will now be substituted into the basic aerodynamics equations
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' Table 4.1.
' Definitions of A, K, and d obtained from the
results of chapter 3
Body
‘ Shape A K d
r‘ .
[\ I disk sin Ss d U,, £,
.0
| - cy.
\ [ cylinder - cos es sin € Kcy uw 1
K - fcfj l:’ T "'_
I cone sin es sin § - cos 95 sin § cos § % o Hc
) 20 2 X
s o
1 I_ sphere ' sia® - £ sin § cos O S N S
\ s
| r
{1 Table 4.2,
‘ . Values of the spin rate parameter, K, for
L a number of past satellites
20 20
Satellite Orbit Altitude Spin rate K
‘ [‘ perigee - apogee (mi) (rpm) (10'3)
1y = ESRO 24 215 - 680 35 .350 - .519
fig B ESRO 2E 205 - 677 35 151 - .223
o IDSCS 19-26 20,940 - 21,068 150 2.29
. ERS 16 110 - 2,260 10 .0197 - .0301
1 ERS 18 and OV5-1 5,357 - 69,316 10 .0306 - .238
R 0s0 3 336 - 354 30 .230
‘ Explorer 32 173 - 1,629 30 169 - .227
r ESSA 1 432 - 521 10 074 - .079
| { ESSA 2 843 - 885 10.9 .084 - .086
iy = ESSA & 822 - 89 10 .078
- ESSA 6 876 - 925 10 .078

rrem.
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obtained in chapter 3. For the disk, cylinder, and cone, analytical results
can be obtained. The equations of chapter 3 expressing force and torque on
@ spinning sphere are not integrable in closed form when Equations 4.7 are
employed; however, the torgue on a spinning sphere has been obtained analyt-
ically in terms o the Maxwell mndel parameters by using the techniques
employed in Re.erence 9, The results from Reference v for the sphere will
be given along with the results for drag of a non-sninning sphere which can
be obtained analytically from the equations given in chapter 3.
The results will be presented in terms of coefficients of drag,

lift, and torque, which are defined as follows.

Drag coefficient = CD - —M‘BZ:
LpU_"A
_Lift

Lift coefficient = CL = : =
,pr A

Torque coefficient = CT = M—%E:
5pU_A r
where A is a reference ares associated with the particular shape being

studied. Ia addition, a reference radius T is introduced in the expressions

for cvefficieats of torxque.

Model Parameters
Substituting Equations 4.7 for the Maxwell model into EZquations

4.1.1, Spinning Disk Properties in Terms of The Maxwel:

3.32 through 3.37 for the spinning disk at angles of attack and integrating

over r' and E (0O tol for r’ and 0 to 2n for €) the following results are
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obtained for the case of the spinning disk, (A =mry , T = rd))
C, =2 sin 6 {2smze 0 (l-Zsinze)
D s s d s
— Ky .2
+adJ1-aT sin 8, [1 == (1 + sin Bs)]} 4.8

C, =2sin @, {-2 sin 8, cos B + 2 @y sin B cos 8,

“ 2

e Kd o 2 %
= ad‘/l_a't cos 8 [1 #om (1 + sin Qs)]} 9

CL =0 4.10

x
C. =0 4,11
Ti N

8

- - - i /

Cr (qd"/l an Ky sin 8 cos es).2 4.12

i
C.tk ==y Kd sin Ss 4.13

A spinning disk is found to have drag and (Lift)z coefficients
which are higher than a disk with zero spin rate. This increase in drag is
proportional to Kd2 which would be smail for satellites.

Besides the expected slowdown torque, a spin induced precession
torque about the Iy7 axis is obtained which is directly proportioned to Kd'
The precession torque arises because diffusely reflacted modules are re-
flected at a velocity relative to the surface which is higher on one half
of the disk when the disk has angles of attack ocher than %’ and zero.
4.1.2. Spinning Cylinder. Properties in Terms of Maxwell Model Parameters

The coefficients of drag, lift and torque for the spinning

PR Pagp—
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cylinder at angles of attack are obtained by first substituting Equations
4.7 for the Maxwell model into Equation 3.42 through 3.47 for the cylinder.
These equations are then integrated over the surface area exposed to the flow
with respect to € from m to 2w. Letting a=2 rcy Land r = tcy the coeffi-

cient of drag, lift, and torque for the spinning cylinder at angles of attack

are found to be :

8 2 8 2
Cp = cos 8, {7 cos” 6 +oy 5 (3/6 - cos” B)
% 2
o = c 2
+J @g/l-ap cos 8 [1 +-—8L(A- cos” 8)]} 4.14

- 8 8
CLz cos 8 [3 cos 6 sin 8 - & cos &, sin

d3
X 2
uf — c 2
+ 5 ag/l-ay sin 6 [1 +—8L (4 - cos” 8]} 4.15
C, =cosg kK [-Ta +2.4 J1-a, cos 8] 4.16
Lx s ey 2 d 37d T 8- ke
c. =To sin8_cos & 4.17
T; 2"7d 8 s 2
s
CT. =0 4.18
1
s
ch =~ 2 Kcy @y cos es 4.19

s

The results obtained for the cylind r exhibit the same iafluence of
spin rate on drag, lift and slowdown torque as those of the disk. Unlike
the spinning disk, the spinning cylinder experiences & spin induced 1lift in

the negative x direction which is directly proportional to the spin rate -

parameter Kcy. This spin induced lateral force on the cylinder is analogous
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| to a similar effect called the Magnus force which occurs on spinning cyl-

CLz = -(1 - atd) (2R3 sin 6 cos es + 2R1 cot § sin Bs)

inders in continuous flow (see Reference 21), In free molecular flew, the + g/l [-R[‘ cos ©_ + R cot § sin 9

L. lateral force is found, however, to be in the direction opposite that of
2
K

the analogous Magnus force. =t {
-~ + % R“ cos es + R

5 cos § sin e&

- cos2 BS(R7 =t Ré)}] 4.21

S —

fed bd et R b e G e g Geed ey ey e Geeg

The finite value of torque perpendicular to the spin axis obtained
in Equation 4.17 is due entirely to geometry and is not spin induced as was

found for the disk. The center of the surface area exposed to the flow is C. = -K 1 mt28-sin2 4
P 1 e 3 .ad (cos Qs cot § s 2 sin Qs cos B)
not at the geometric center of the cylinder but is a function of the angle

i — e

+2 ay/l-a; R cos §_ cot & 4.22
of attack. If end contributions were included in the development of equa- ! =
| z
— tions, C.  would be zero. ! c =g g A3 sin’d
is i Ti A 3 sin26

174 2 1
y + o —[— i LR e
4.1.3. Spioning Cone Properties in Terms of Maxwell Model Parameters a3 iy 50 95 cop B w o8 95 pin s ©°F 6::81n; 2P

The coefficients of drag, lift, and torque for the spinning cone g % cot? § cos? 8, cos B - 2R 1-3 81226 ?
1, at angles of attack are obtained by substituting Equations 4.7 for the Max- stais =
2
F— 1-3 si
" well model into Equations 3.30 through 3.56 for the cone. These equations = Ud/l'ar [RS C}“‘E—%‘g)
3 sin"
| can be integrated in general form by incorporating the angle B and integrat- K 2 2
| , B=SoH. = eat bR y (L5 sia s\“ 433
\ ing over the surface area exposed to the flow with respect to 2 from 0 to 1 4 5 s 76 5 gin2d 7
= = 2 = i
and € from (7 - B) to (2 + B). Letting A =nmr and r = r _the coefficient X, - B - sin28
c c | C,r - 7= T;— Lad(cotz 6 cos es 2 P sinZ +£ cot § sin es cos B)
| of drag, lift, and torque for the spinning cone at angles of attack are found js
D=
I e 1-4 si
b 1 +ag/l-ay 2R) cos 6 o 6_1 4.24
| sin” §
2 28 I
C. =R, +a,|= cos B cot b cos B+ sin §_ - R J
D 2 d [ﬁ s ” s 2 - 1 2
. 2 CTK = Kc LA (ﬂ cos B cot § cos B + ﬂ%;ﬁ sin Ss) 4.25
} —_ c b = s
= G =
i + ap/lay [R3 S (R, - Ry cos” 8) | 4.20
The functions Rl’ Rz, — R8 used in Equations 4.20 through 4.25

bod  bd bd e




are defined as follows.

2 2
R1 ~ g con es c052 6 cos B (sin2 B+ 2)

2 2
- ; sin es sinz & cos B

- sin B_ cos 8§ sinbcoséw
s s 1 N

-
l
| - 2
4 3
‘. R2 =3, cos Bs cc:s2 & cot 6 cos B (sin2 B+ 2)
+2 sin’ g sin? § TH28
o ] ™
+ 3 sin cos® 8 cosz' [ w28 - sinZp
8 s e m
- 12 .2 .
i + - sin es cos es sin 6 cos & cos B
- 2 m+28 - sin28
[ R3 cos Ss cos § cot & P
; + & sin @ e 8
r = s <0t Scosﬁcus&

+ sin® §_ sin 5 T28
8 ™
2
R["-;cosescc\sé::c»sB-siness:l.néﬂ._:;'——zE

_ ™28 - sin28 | 2 ;
R, cos eﬁcose zwsn +;sin95 sin & cos B

sin § c053 B

\
\ R = Eoa 2mH4B - sindg | 2
= 8_cos § =
}_ g 08 Tom + In sin GS
f

2 3
L R, = - 37 ¢0s 8 cos 6 cos” B - sin 6 sin § D22 T sinB

~ 2 2748 - sin 48
R, cos” 8 cot 6 cos b Tom

L 3
+ g sin es cos BS cos & cos” B

% Enl 8, sin 6 nﬂB?‘f__s_in_Za
2y
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In Equations 4.20 through 4.25, the value of the angle B depends
upon the angles es and § in accordance with the three cases of surface ex-
posure defined in the last chapter for the cone. Using those definitions
the following ranges of B are defined.

Case I: tan es tan § > 1

Case II: -1 < tan 95 tan 6 < 1

= sin—l (tan 8S tan §) 4.26

Case III: tan es tan 6 < - 1
o=~
For case III, the coefficients of drag, lift, and torque all become zero
because the conical surface is shaded from the flow.

The cone equations are found to be similar in form to those ob-
tained for the cylinder and disk. As in the case of the spinning cylinder,
a spin induced lateral force is experienced by the spinning cone at angles
of aztack. The spin induced lateral force is found to be directly propor-
tional to the spin rate parameter Kc' ¢

The cone is found to also experience 2 spin induced torque, per=
pendicular to the spin-axis, about the ys axis of the cone. The component
of torque about the Xg axis is not spin induced but is instead due to the‘_
moment of the drag and (lifc)z forces about the center of the coordinate

systems. ,

4.1.4, Spinning Sphere Properties in Terms of the Maxwell Model Parameters

The sphere equations given in the last chapter must in general be

> - e —
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evaluated by numerical techniques for all cases of the gaz-surface inter-
action model. The equations g;ven in chapter 3 are particularly useful
when applied to shapes such as spingg:g spherical caps, and hemispheres.
For the special case of a copplete sphere, analytical solutions for the
torque components are given in Reference 9. The results qf Reference 9.
will be given here and are the same aé would be obtained by numerically
solving Equations 3.61 through 3.66.

Letting K.- m rsz and ; = rs{ the coefficients oé torque on the

sphere are as obtained in Reference 9,

C =0 4.27
Ti
s
CT = (KS @, sin es cos es)/2 4.28
jB
(o --K(X(2+cosze)/2 4.29
Tk s d s Y
s

The coefficient of drag for a non-spinning sphere, in terms of the Max-
well model parameters, can be obtained analytically from the equations

given in chapter 3. Letting A= m rsz,

4 I
Cp=2+3 adjl-ar, K_=0 4.30

D s
The coefficients of drag and lift for the spinning sphere must be obtained
by numerical integration techniques and are therefore not available in

analytic form.

4.2. Solutions in Terms of the Generalized Model Parameters

4.2.1. Analytical Results (Zero Spin

b=
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For the special case of zero spin rate, the equations of chapter 3
can be integrated in closed form for certain cases of angle of attack.

These results are given in the following sections.

4.2.1.1. Drag and Lift of Flat Plate at Angles of Attack

The angle 6 for the disk (Equation 3.31) becomes es for the case

when K, = 0. Therefore,

d cos Czl P. + (1_Pi) GJ
¢, =0 . /i, L 6.31
j i) 8 cos Gs
and
sin (g P+ (1-P,) & )
s, =0 /l-a - — - 4.32
i sin 8

which are independent of r' and E.
Substituting Equations 4.31 and 4.32 into Equations 3.32 through

3.37 fer the disk with K, = 0, the following resvlts are obtained after

d

integration over r’ from O to 1 and € from 0 to 2m. Letting A=mw :dz

= Pt = Goie. s [z . "

Cp = 2 sin Bs ZGSJL @y sin 8, cos LZ Pj + (2 Pj) 8| .33
— i

= -2 0 /T, sin &_ sin [— P, + (2-2,) @ ] 4.36
cLZ j/ j s 273 i’ Vs
C. = C, = C, = C, =0 4.35
Lx Ti Tj Tk<

s S S

These equations can be shown to reduce to Equations 4.8 through 4.13 ob-
taiced for the disk in terms of the Maxwell model parameters by letting

K, = 0 and substituting the appropriate terms for cj, Qj’ and Pj' Since

d
the repeated subscripts imply the summation over the J beam components,

Equation 4.34 for example could be written
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J
CL: = -2 sin B, 551 {chl-aj sin (aj + 0.}
J
where T o, = 1.
=13
In Equations 4.33 and 4.34, the first approximation to ej has been

utilizied.

4.2.1.2 Drag of Cylinder with Axis Perpendicular to Flow
In the cylinder equations of chapter 3, the angle p, given by
Equations 3.40, becomes if Kcy =0,

sin 8 = - cos 8 sin € 4.36

For the case when the axis of the cylinder is perpendicular to the flow
(e, = 0), sin B becomes

sin @ = - sin
For € between 1 and 3n/2,

cos § = - cos §

Therefore, C, and SJ become, for & between 1 and 3m/2,

cos fi"f (1-2)(-n +__§)]

cos §

b

CJ = -crj ,\/l-cxj

sin [323 P+ (1-B)(-m + g)]
= T 2 hi il |
By = Py At sin €

4.38

The coefficient of drag for this special case of the cylinder is found by
taking twice the value obtained by integrating over § from 1 to 3m/2.

Letting A=2 rcy L, the drag coefficient of a cylinder is given by

c-z+zUJ1-a[c°85P ] P #1,3
D b j (1'Pj)(3"1’j) ] ’

d 4
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for ?j = 1, the expression in the bracket should be T, A value of P, = 3 cen

L b

not be meaningfully applied to the cylinder problem unless a discontinuous
linear relationship is chosen for the angle-of-reflection law. Equatiom 4.3°

is valid only for values of P, between 0 and 2. Equation &4.39 can be shown

]
to reduce to Equation 4.14 for the Maxwell model by substituting ihe appro-
priate values for cj, Qj

this special case of a non-spinning cylinder at 95 = 0.

, and Pj. The other coefficiencts aie all zero for

4.2.1.3. Drag of Cone with Axis Parallel to Flow

For a non-splnning cone, l(c = 0, the expression for sin 8 reduces ti

sin 8 = sin 8y sin 6 - cos 8, sin € cos §
1f es - g, the axis of the cone is parallel to the flow and the above equa-
tion for sin @ reduces to
sin 8 = sin es sin 8 = sin §
or
Qs §
Therefore, & is found to be independent of the variables of integration 2’
and €. For es = g the angle B is equal to a constant of g. Since the term ¥
in Equation 3.50 is also independent of £’ and €, Equations 3.50 can be inte-
grated in closed form over £’ from 0 to 1 and € from 0 to 2m. Letting
A=aq rc2 the following equation for the coefficient of drag of the cone is

obtained,

C. =2-2qgu T, co [I! B, + (2-P, s] 4.40
5 af/ 5 o8 |2 By [¢ J)

The cone equation is found to have a form similar to that obtained for the

flat plate at angle of attack.

0
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4.2.1.4, Sphere Drag
The drag coefficient of a non-spinning sphere can be obtained from
Equation 3.6.1 by letting Ks = 0 and es = g. Then, sin 6 becomes
sin 6 = 2’
the next step is to now change variables of integration so that
sin vy =2’
or v =0

Substituting this into the expressions for Cj and Sj and then integrating

2
g 1

I ‘u—-
Equation 3.61 over  from O to 2m and p from O to 2 and letting A = 7w r

the following result is obtained

4(1l-cos Tp )
5]
= s P.#0, 4 4,41
CD 2+°f/1-qj Pj(z"Pj) i By s
where for P, = 0 the bracketed term should be zero. As in the resusis

]
obtained for the cylinder, Equation 4.41 for the sphere drag is valid only
for values of Pj between 0 and 2. A value of PJ of 4 could only occur if a
discontinuous linear relationship were chosen for the angle-of-reflection

law and in that case the equation cbtained would not be the same as Equa-

tion 4.41.

4.2.2. Numerical Methods

For cases other than those givea in previous sections, the ex-
pressions derived in chapter 3 for aerodynamic properties contain integrals
which must be evaluated numerically. In choosing a numerical technique,

practical consideration must be given to the computation time required to

82

obtain results of suitable accuracy which in turn s dependent upon the com-
puter being used to perform the computations. The numerical evaluation of
the expressions of chapter 3 were made on & Control Data 1604 computer with

an on-line video display system from which graphical results were obtained.

The numerical techniques employed are described in the following,

4.2.2.1. S'.ngle Variable of Integration

Results requiring integration over ome variable, such as those of
the cylinder, were obtained by using the Gaussian integration formuls over
and arbitrary interval which is given by
b by 1B
T ot oy =3 I u £(@,)
e i=1

where

b-a bta
v = ) %+
The weights, w; and abscissans, *;, were obtained from Reference 22, The
twenty point formula, n = 20, was used in all cases. Frem tests, it was

found that at least fivz place accuracy was obtained by using this formula.

4.2.2.2. Douyble Integration

Results for the disk and conme require integration over two vari-
ables. For these cases, the region of integration was divided into squares
of equal dimensions, h. (This is possible for the disk and cone since the
region of integration is always rectangular.) For each square, a nine point

double integration formula was used given by

9
1
2 fsf £(x,y) dxdy = ifl wy £Geuyy) +R
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From Reference 22, the abscissas (x,,yi) and weights w,; are given as
i
(x5y,) w

(0,0) 16/81

Q/-%_h, & fgj'_h) 25/324
(o, iF;) 10/81

(+ 10/81

where R = O(he).

Tests showed that results of at least 5 place accuracy could be
obtained in using this formula by dividing the region of integration into
about 100 squares.

The above double integration formula was not applied to the
sphere because the region of integration defined by the shadow boundary
in the sphere is curved and cannot in general be divided accurately iato

squares. Numerical results for the sphere were not obtained in this study.

4.2.2.3. Graphical Display of Results

In order to evaluate the expressions given in Chapter 3 at various
values of the quanities Pj’ es’ K and, for the cone, 6, a numerical inte-
gration must be performed for each case separately. Graphical results of
the variation in an aerodynamic property as a function of these quantities
were obtained by evaluating the equations at six or more separate values of
the quantity of interest and then using a six point Lagrange interpolation

formula ro plot the curve. For the case of the cylinder, for example, 288

—r———r
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separate numerical integrations were evaluated and stored on magnetic tape

corresponding to six values for each of the quantities P, and 9l and eight

i
values of Kcy' Graphs of any of the aerodynamic properties as a function
of any of the three quantities can be generated by obtaining the appropriate
values from storage and using the interpolation formuls to obtain values

along the curve. Graphs are displayed on a T.V. screen from which pictures

may be obtained. Numerical results are also obtained.

4.3. Discussion of Results

The analytical solutions obtained in this chapter illustrate that
the gas-surface interaction strongly influences the aerodynamic properties
of both non-spinning and spinning bodies. For non-spinning bodies, the
drag coefficient is the principal aerodynamic property of interest. Fig-
ures 4.1 through 4.8 are plots of some of the analytical results obtained
on drag coefficient as a function of the gas surface interaction. ,

Figures 4.1 and 4.2 are plots of CD given in Equations 4.8 and
4.33 for the flat plate versus angle of attack for various values of the

parameter oy of the Maxwell model and of P, of the generalized model re-

;)

spectfully, The parameters oy and o, were set equal to .5 and o, = 1, and

] ]
the spin rate parameter Kd is zero. These two plots illustrate the effect
of the gas-surface interaction on determining aerodynamic properties. The
effect of backscatter reflections is illustrated in Figure 4.2 by the curves
for values of Pj between 1 and 2 and is seen to increase the drag coefficient

values at all angles of attack.

Figures 4.3 and 4.4 are plots of CD given in Equations 4.14 and

e e e ——— - TN
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Figure 4.1. Drag coefficiert of a non-spinning disk at angles of
attack varying the Maxwell model parameter %
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Figure 4.2. Drag coefficient of a non-spinning disk at angles of

attack varying the generalized model parameter Pj.
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Figure 4.3. Drag coefficient of a non-spinning cylinder, with axis of
’ cylinder perpendicular to the flow, as a function of the
Maxwell model parameters.
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Figure 4.5. Drag coefficient of a non-spinning cone, with axis of
the cone parallel to the flow, as a function of the
Maxwell model parameters.
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Figure 4.6. Drag coefficient of a non-spinning come, with axis
parallel to the flow, as a function of the generalized
model parameters.
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Figure 4.7. Drag coefficient of a non-spinning sphere as a fuunction of
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Figure 4.8. Drag coefficient of a non-spinning sphere as a function
of the generalized model parameters.
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4.39 for the non-spinning cylinder (Kcy = 0) with the axis of the cylinder
perpendicular to the flow. Figure 4.3 gives the drag coefficient, using

the Maxwell model, plotted versus aT

is a plot of CD versus aj for various values of P, which are the parameters

i

of rthe generalized model. For values of Pj between zero and one, the range

for various values of ey Figure 4.4

in drag coefficient is the same for both models. For values of Pj greater
than one, however, the generalized model gives higher values of CD than does
the Maxwell model.

Figures 4.5 and 4.6 are plots of Cp given in Equations 4.20 and
4.40 for the non-spinning cone (Kc = 0) with the axis of the cone parallel
to the flow. The half angle of the cone for these plots if 15°. Figure
4.5 gives the drag coefficient versus aT for various values of ad which are
the parameters of the Maxwell model. Figure 4.6 is a plot, alsc of the
drag coefficient, versus aj for various values of Pj which are the para
meters of the generalized model. 1In Figure 4.6, the effect of backscatter
and over-specular reflections are both illustrated. The curie for Pj = -2
shows that over-specular reflections give values of CD less than 2. 1In
general, over-specular reflections decrease the drag coefficient while back-
scatter increases the drag coefficient.

Figures 4.7 and 4.8 are plots of CD given in Equations 4.30 and
4.41 for cﬁe non-spinning sphere. Unlike the previous plots, the two plots
of sphere drag coefficients are very similar for the two cases of gas-surface
interaction models. Figure 4.8 illustrates again that backscatter causes

increased values of drag coefficient. The results shown in Figure 4.7 us-

23 -
ing the Maxwell model are different than results given by Cook = which are

—————
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similar to those given in Figure 4.7 except that the magnitudes of drag

coefficients are different in the two plots for the same values of oy and
aT' For example, at ad =1 and oy = 0, Reference 23 gives a value of CD
for the sphere of about 2.89. Figure 4.7 (Equation 4.30) gives, however,

a value of 10/3 for CD of tne sphere at oy = 1 and @ = 0. The difference
between the wwo results is because the results in Reference 23 were ob-
tained from Reference 15 in which Schemberg obtained the equation of CD for
the Maxwell model for a certain choice of parameters in his model. 1In
reducing the Schamberg model to the Maxwell case, the distribution of
velocities proposed by Schamberg were still retained which, as discussed

in chapter 2, introduces a factor of 2/3 i{n the coefficient of JT:;;.

The effects of spin on the aerodynamic properties is well
illustrated, for the Maxwell model, by the analytical results given in
section 4.1 of this chapter. In general, the results show, for the case
of the Maxwell model

1. As the spin rate increases, drag and (lifc)z increases.

The increase is proportional to kZA

2, A spin induced lift force in the lateral direction,

(Iifc)x,occurs for elongated bodies at angles of attack.
The lateral force is directly proportional to the spin
rate parameter, K.

3. Spin induced torques perpendicular to the spin axis are
experienced by all the shapes at angles of actack, except

the cylinder.
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4. The slowdown torque on 2 spinning body is directly
proportional to K. Also, for the four shapes studied, |
the slowdown torque is directly proportional to oy

and independent of &

The effects of spin described above were also found, in general,

for the case of the generalized model. The results for the case of the gen-

eralized model were obtained by numerically evaluating the expressions given

in chapter 3.
The numerical results showed that drag and (Iift)z increased with

increased values of K and the increase was roughly proportional to Kz. The (:TK' _1 () () €5 —
s A

numerical results also showed that a spin-induced lateral force was experi-

T

enced by the spinning cylinder and cone which is roughly ;;oportional to K.
As for the case of the Maxwell model, no lateral force was found to occur
for the spinning disk. The numerical results for torque perpendicular to
the spin axis also showed the same dependence om spin as indicated by the

analytical results obtained in terms of the Maxwell model parameters.

Numerical results obtained for slowdown torque on a cylinder in

terms of generalized model parameters are given in Figure 4.9. These re-

sults show that the slowdown torque is a function of both «

and Pj .. For ) RS- 444

3

the case of the Maxwell model the slowdown torque is dependent on only

one of the model parameters, ay- The numerical results for the .slowdown

torque of a spinning disk were similar to those obtained for the cylinder.

Figure 4.9. Coefficient of slow down torque on a spinning cylinder

at zero angle of attack as a function of the generalized
mode] parameters.

4.4, Conclusions

Two conclusions are evident from the results obtained in this
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chapter. First, the aerodynamic properties of boch non-spinning and spinning
bodies is strongly affected by the gas surface interaction. Secondly, dif-
ferent shapes have functionally different dependence on the gas-surface
interaction parameters of a particular model.

These two conclusions suggest that gas-surface interaction experi-
ments could te performed in which measured aerodynamic properties of various
shapes could be utilized to obtain information on the gas-surface interaction.
Since the spin induced torque and (lift)x properties are also strongly de-
pendent upon the gas-surface interaction, considerable information on the
gas-surface interaction could be obtained by making measurements ﬁf these
aerodynamic properties of spinning bodies as a fumction of angle of attack.

The possible experiments suggested by the results of this chapter
would be difficult, if not impossible, using current laboratory methods.

It is, therefore, proposed that the aerodynamic properties of spinning
satellites be utilized to obtain information on the gas-surface interaction.
The high velocity, largely neutral, free molecular gas flow generated by a
satellite's motion through the atmosphere are almost ideal experimental con-
ditions for performing gas-surface interaction experiments. The remainder
of this study is directed toward determining the feasibility of performing
the satellite experiment suggested by the results of this chapter. Toward

this end, the aerodynamic properties of spinning satellites are obtained in

the next chapter.
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5. AERODYNAMIC PROPERTIES OF SATELLITES

In chapter 4 the aerodynamic properties of bodies in a free
molecular flow were determined for the case when the flow is stationary
with respect to the body. In this chapter the aecodynamic properties of
satellites is investigated for when the gas fiow is nc longer fixed in
direction.

The instantaneous aerodynamic properties of a satellite can be
found at any part in its orbit by a suitable coordinate transformation
of the equations obtained in the preceding chapter. Since measurements
of satellite aerodynamic properties are not usually made on an instanta-
neous basis, the average aerodynamic properties of a satellite over one
orbit is investigated to determine how these average properties depend
upon the gas-surface interaction. |

The results of this chapter will be used in chapter 6 to study
the feasibility of performing a satellite experiment to measure gas-surface
interaction parameters. The equations and procedures develcped in this
chapter can also be applied to the problem of a tumbling non-spinning
satellite. This application is illustrated by obtaining the average drag
coefficient for a tumbling non-spinning disk as a function of the parameters

of the Maxwell gas-surface interaction model.

5.1. Coordinate Transformation

Ia the equations developed in the preceding <hapters, the aero=

dynamic properties of the various shapes were referred to a coordinate
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system which was assumed fixed in inertial space and attached to the free
stream velocity, E@. For a satellite in orbit about the earth, the coor-
dinate system attached to E@ rotates in inertial space as the satellite
travels in its orbit. Since the torques acting on the satellite must be
referred tc a non-rotating coordinate system, a new reference frame which
is attached to the orbital plane of the satellite is chosen. For the pur-
poses of illustrating Lhe aerodynamic properties of satellites and the
feasibility of the proposed satellite experiment, the orbit is assumed to
be circular and bave fixed orientation in inertial space*. The atmospheric X,X‘
density is also assumed to be constant over the orbit.

The initial orientation of tie satellite spin vector in the or-

bital reference frame (xo,yo,za). is shown in Figure 5.1. The Xy plane

is in the orbital plane of the satellite and z is the normal to the or-
bital plane. The free stream velocity vector, 3m, rotates in the %=V

plane at a constant rate, &, equal to the angular velocity of the satellite's
orbit. For convenience, the sztellite spin vector, T, is chosen to be
initially in the X"z, plane at an angle A from the normal to the orbit, zo.

Yo

With the above definitions, spherical trigometry can be used to

find the angle es in terms of the two angles A and . This expression is

given by n§-433

8, = .‘sin-1 (cos @ sin A) Jal

where a' is the angle between z and (. (The notation and definition of Bs

- Figure 5.1. Notation and coordinate systems.
In general, the orbi 1l plane is not an inertial frame of reference since

the non-spherical distribution of the earth's mass can cause the orbital

plane o[ a satellite to rotate in inertial space. This effect and other

perturbing cffects of the space environment are not ircluded in this study,
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used in Equation 5.1 is consistent with that used in the equations of pre-

ceding caapters.)

5.2. Instantaneous Aerodynamic Properties of Satellite

By substituting the expression for €, given by Equation 5.1, into
the equations of the preceding chapters, the aerodynamic properties of a
satell.te can be determined at any position, &, in the orbit. For later
applications, it is desirable to divide the instantaneous force and torque
on the satellite into components associated with the LIRS AEN coordinate

system.

5.2.1. Components of Force

The force acting cn the satellite at any position & in the orbit
is divided into a drag component in the direction of ﬁm gnd two components

of 1if’, normal to ﬁﬁ. For force, a coordinate system X Vg2 is defined

which i{s associated with the X,»Y, 2, System as shown in Figure 5.2. The
- n3-a32
yf-nxia is in the direction of positive U_and is therefore in the ®EY
plane. The z-axis is in the same direction as the zo-axis and the x-axis
then completes the triad. The force on the satellite is then divided into
components of (drag)¥inthe direction yf;(lift)xf, which is in the plane of
the orbit: and (1ift)xf. which is normal to the orbital plane.
The components of force defined in the preceding chapters

o o = Figure 5.2. Coordinate system for force compouents.

(drlg)y, (lif:)x, and (f}fz)z are referred to the XeaYerze system by per-

forming the proper coordinate transformations and using Equation 5.1.

The results are
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. cos b _ sin o sin x] + [aras] ’ = T =7 x (lift) k 5.4
L4 [(llfc)x cos el (lifc)z cos 95 if dragJ jf g =% s o zf £
sin o sin A cos A 7 ] . Since k_ =k
——— LA .2 .
‘ * [(lift)x cos es x (1ift)z cos SSJ kf = . £ 22
To = -r_ cos % (11.ft:)zf i -, sina (lift)z£ jo %]
where 1f’jf’k£ are unit vectors in the xf,yf,zf system and where
I % | T Define the coefficient of torque on-the-orbi. to be given by
[ 2 2 Y
‘ cos 9s = ( l-cos” o sin {) | | S
\ | N € =T /ha Umz Ar, 5.6
| Aerodynamic drag and lift forces are known to affect the elements

o

of a satellite orbit. In terms of the components of force given in Equation where A is the reference area of the satellite.

5.2, the principal effect of drag and (lift)x (component of force in the if
£

o L e o S e e

i Using Equations 5.5, 5.6, and the kf component of forces given
| direction and in the plane of the orbit) is to cause the semi-major axis of . in Equation 5.2, the coefficients of torque on-the-orbit about the X, and
the orbit to decay and cause the eccentricity of the orbit to decrease to ] == ¥ axis, respectively, become
| zero (see for example References 24, 25, and 26). The third component of -cos @ sin o sin A cos & cos A 5
sy, = Cy, ImsEm——m—er,0 57
21 T xo cos es Lx cos 6s Lz
force, (lift)z is normal to orbital plane in the direction kf. This force o
£ -1 2
causes a torque on the orbit and has the effect of causing the orbital plane {C., ) w8l & sin A (o} . aind cos X C,
‘ I - T Yo cos & L, cos 8 L,
5 to precess in inertial space which is analogous to s gyroscope precessing
|
r under the accion of%an external torqus. -
5.2.2. Components of Torque Acting on Satellites
\ A complete scudy of the perturbating effects of drag and lift must i
| r &l The torque acting on the satellite at any position @ in its orbit
| & necessarily {nclude also other perturbating forces of the space environment
! . is divided into a slowdown component in the direction of ), and tyo com=-
r such as solar radiat{on pressure and gravity gradient forces. Such a study

ponents of torque perpendicular co 5 For satellite torque, a coordinate
s beyond the scope of the present work. For the purpose of the present

]
L system Xy y', k' is defined which is associated with the x Y02 Nystem
2 study, conslder the torque on a circular orbit caused by the (lift), com- S O s

as shown in Figure 5.3. The z’-axis is in the direction of (1 and is there-
| poneat of force. The radius vector, r , from the center of the earth to 1 s
[ @ 2 ¥ fore in the x5, plane. The x -axis is in che same direction as the y ~axis.
the satellite is given by , o 2 °
- e The ys-axis then completes the triad. The ccmponents of torque on the
L R sin o ‘o - (g Jeoula Ju 5.3 |

1 BE
’ .

satellite are then denoted by a slowdown component, T, ¢» in the direction
The torque on the orbit i{s then given by e g
0; a Tx' component of torque in the plane of the orbit and {n the direction
5




105 106

X3 and a Tj/ component which is out-of-the-plane of the orbit by the angle
s

A. The components of torque perpendicular to 5 cause precession which also

has components out-of-the plane and in-the-plane of the orbit.

The components of torque defined in the preceding chapters (Ti »
s

Tj , and Tk ) are referred to the x;, y;, z; system by performing the
s s

proper coordinate transformation and using Equation 5.l. The results are

ot

Z, { - §
s | | T= [T, cos o gos A T sin : ] i
iy cos 8 js cos 8_J s

| 28 sin & cos & cos A ’

L +|T + T ] |

i i L is cos es Jg cos 95 Jds

¥s | ; i

{ : ® [Tk ] ks 5:9
{ s
( { This equation and the equation of the previous section allow the results of
. | chapter 4 to be used to find the instantaneous aerodynamic properties of a
; satellite at any point @ in its orbit.
i
[
\ 5.3. Average Aerodynamic Properties of Satellites

'
[ Yo | The average aerodynamic properties of a body is defined by the
R3-433 { equation ,
{ ) = 1 T
‘ c=5.] cat 5.10
T o

where C represents the aerodynamic property being averaged and T’ is the
{ time interval over which the average ir taken. As a satellite travels
through its orbit, the velocity vector G@ rotates in the %V, plane.
Figure 5.3. Coordinate systen for torque components. |

‘ | The positioa of the velocity vector is determined by the angle o at a

| = given time t. For the purposes of the present study, consider the case of
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a satellite in near-earth circular orbit. If the altitude loss due to the
action of aerodynamic drag is assumed to be small, the angular velocity of
the sarellite's orbit can be approximated by a constant determined by the
average radius of the orbit for a single pass about the earth. Si}i‘l;rly,
an average circular velocity equal to the free stream velocity u_ and an
average atmospheric density p can be approximated by constants.

For a constant angular velocity & = w, Equation 5.4 can then be
changed to an integral of the angle a over 2m for one complete orbit. The
equation for the average aerodynamic properties of a satellite over one
complete orbit i{s then given by
L B .

2=, C 5.11

C=

Pquations 5.2, 5.7, 5.8 and 5.9 can then be substituted into Equation 5.11,
with the appropriaste equations from the preceding chapter, to determine the

average properties of satellites.

1 1} Disk

In general, the evaluatioz of Equation 5.1l invclves the use of
numerical techniques. For the case of the properties of the spinning disk
in terms of the Maxwel! mode! parzmcters, however, Equatlion 5.11 can be
evaluated analycically. The procefure s to first substitute Equations 4.8
through 4.1) for the disk iate the cquations for the instantaneous sero-
dyanmic properties glvea by Equstions 5.2, 5.7, 5.8 and 5.9. Equation 5.1
in umed to replace O_ in terms of @ 3=t b. These results are then sub-

atituted into Equation 3.11 and (ategrated 1o find the average propertics
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i1}
over one orbit. Two cases are considered: 1) spinning disk witl one side

exposed to the flow and 2) spinning disk with both sides exposed to the
flow. The results cf thc first case can be applied to problems such as a
spinning cylinder or spinning cone in which the ends of the cylinder and

base of the cone can be represented as spinning disks.

5.3.1.1. Spinning Disk with Gne Side Expcsed to the Flow

Following the proczdure outlined above, the vesults for the

average properter of a spinning dlsk with one side exposed to flow are

ED - 8; stn3 A+ ”y (% sin 2 - §—_ sin” %)
£
—_— 1,2 T " I e
+qd\/l-a1_ L-isin \+gd (16 sin” X + 7 sia \)Y 5.12

c. = 5:13
L.r , 0

1

s
T. =-i - X < A 5.14
C‘I , 3 a&/IQT..& sin X\ co-

s
ET om- 2,k st} 5.15
L

e ) = - %ﬂ' (1-ud) sinz \ cos )\

3
Jl-a K (1—' sin \ cos A\ * e sin” A\ cos )\) 5.16

5.3.1.2, Spinning Disk with Both Sides Exposed te the Flow

Thy procedure .o Ve tollowed tor the case of the dink witl, both

sides exposed to the tlow {a the same ax adbove except that, when the [low
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s on the "back-side" of the disk, appropriate changes in signs must be made
on Equations 4.8 through 4.13 to account for the fact that the spin rate

vector O is in the opposite direction. The results are

- _16 3 A 16 .3
Cp = 3 sin” A + ay (" sin X - 3= sin” \)
22 K 2 (l iuz A 3 slnb W] 5.18
+ adJl-ar [sin”™ A a @ ° 32
C. =0 5.19
T,
L]
. = 5.20
er, o)
s
c 5.21
C.t ,-‘47414 sin %
%
s
= .18 2: ;
(CTO)zo o 1 ad) sin” ) cos )
- ag/Tay %7 (3 s1a % cos 2 +2 510 2 cos 1) 5.22
T 5.23
€ ), =0
o o

For the case of both sides of the disk exposed, the torque perpen-
dicular to the spin axis of the sateilite {s found to average to zero over
one orbit. The averags drag and torque oo-the-orbit about the x, axis is

found to double as would be expected.

3.3.3 Spinning 3pherical Ssteilite

The avezage cvefflcleats of torgue oz & spinning spherical satellite
can be obtalned in tercs of the pacame ers of the Moxvell acdel fros Equations

4,27 through 4.29, The resuits are

i
5
i

e
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€ =0 5.24
T 4
s
g, -1 K in A A 5.25
Tj % Kg @y sin A cos .25
s
[ = - L K_oa, (6 ~ si 2 A) 5.26
Ty . 4"s “d o .
s

Unlike for the case of the disk, the average, over one orbit. of torque

perpendicular to the spin axis, ET » is frund to be finite for the case

of a spherical satellite. 8

:3.3. Spinning Cone-Disk Composite Satellite

Consider a satellite composed of a cone spinning about the axis
of the cone and a flat base represented by a spinning disk. For convenience,
consider the center of mass of the satcilite to be at the center of the base
of the cone. For purposes of {llustration the gas-surface interaction will
be assumed to be of the Maxwell type. The equations expressing the aero-
dynamics of the spinning cone at angles of attack have been obtained in
analytical form in terms of the Maxwell model parameters and are given by
Equations 4.20 through 4.26 in chapter 4. Since a cone-disk composite
satellite is a convex body, Equations 5.12 through 5.17 fow the disk with
ET’.
(Equation 5.14) is reversed for this application since only the "back-"

one side exposed to the flow can be applied directly. The sign o

side” o( the spinning disk is exposed to the flow.
The average properties of the conme part of the spinning cone-disk
composite satellite are obtained using the numerical techaiguer described

previously to perform the lategration over & inm Equatl .1 FPor exswnle,




111

for a cone of a half angle of 15° and A = 45° the following results were

obtained numerica 1ly.

- 1 — 2 b
Cp =25 [15.4 + 45 oy + a T (10.5 + 2.04 X%)) 5.27 ’
€ =l [3.12+2.124q, - ada (1.3+8.7 x 10°3 %] 5.28 ! ‘
T,r 2T ==d o/t ;: S {
: |
‘
[-402K a, - o fa. (2.3 x 102 K + 8.2 k2)7 5.29 7 5
T, 2m-Tc Fg - Fgilmap (2. > 4 : ' 3
£ ‘
- 7.9
‘2, =2 Koy 330
&
L ]
= L ¢ — - 2=
(C’o)'o =2 (-l22+ L2240, - aTa (.85 - .38 KD)] 5.31
- L. o e .
€ )y =3 (276K a, - afia; .0 B 5.32

The sverage properties of a come-disk sateilite are a functicn of

the cone half sagle & s=d che angle L. This functional dependence {s illus-

FU P RS e e e ey e e S W WO O
1}
"
lH

trated La Figure 5. 4 vhere the sverage drag coefficient {s shown plotted as

4 function of the angle

for various values of the angle 3.

=~

e 3.4, Average

gysamic Properties of Jumbling Bodies

The average sercdy=amic pTopertics of & body which {s tumbl

ing in

I & random ssnner cas Se fouad csimg the

techriques developed {n this chapter.

Let rhe orluntation of che body with Teaspect to the

flow be determined by

the anglos @ amd \ 1f the criestat{wa (¢ congletely randon, all valucs of

- \ between O and = sad of & Dutween D sad 2= ecter oy an equal amount ¢
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time. The average of an aserod)namic property for a random-tumbling body
is expressed by
=_1 " )
c-:j‘o Joc.andxdn 533
wherc C {s the serodynsmic property being averaged (see Reference 27).
A single exsmple of the application of Equarion 5.33 is given in
the following for the case of s non-spinaing disk.
4,1, Averagw icient of a Ra Tumbling Disk
The instantaneocur crag coetficient of a disk in terms of the
persmeters of the Mexwell model is given by Equation 4.8. In terms of
the angles o and i, the (astastsneous drag coefficient for zero spin rate
is glven by

reg 3 3.
(Co}gl.g ® 4 cos” @ sin” o+ :‘(2 o8 @ sin i - & t::lJ o nin3 2

’Q‘ ‘--Q: 2 :m-2 G si=" & 5.34

Due to symmetry, the integratiom cf Equatios 5.3) for the disk can be ob-

talned as elght tises t* - (=tegrstios ever o froz O to ? and 5 from O to

[(S181

The resule Ls

ol

®1le 5.3%
éisk
The average drag cwefficiens «f the randon-tunb.ing Siew (s found to be

considerably less than the asolmen possible Srag ceefficient of four for a

atatlonary disk nermal 4 the flow The sversge drag coefficlent gi®en in
Bquation 3.33 (s ensetly half the &rsg coeff.clest of 5 sphore (see Equaticn
4, 30),

Approvimption Techa. quas “Wee bowr ronmetly ruployed fo deternine

i
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average drag coefficients of tumbling bodies. The results of two approxi-
mation techniques applied to the disk problem are given for comparisen to
the results given in Equation 5.35. Using results obtained by Schamberg
(Reference 15)

(C.) =3+ 2ayl-a 5.36
D &/ %

Using techniques developed by Sentman and Neice (Reference 27)

(CD) ~ .85 - .42 a, * .62 (:d\,/l-:)‘r 5:3%

The approximation techniques used in Feference 15 (Equation 5.36) are seen
to give a drag coefficient three times greater than that given by Equation
5.35. The approximation technique of Reference 27, on the other hand, gives
slightly lower results than that given by Equation 5.35, but the percent

error is considerably less than the results of Refercace 15,

5.5. Discussion of Resulty

The results obtzinea in this chapter have been limited co the use
of the Maxwell model because analytical expressions could be obtained in
most of the cases studied. The procedures used to obtain these vresulta ave,
however, equally -ppli:n;ﬁl- te problems usiog the peccralized model (f
numerical merhods are employel.

The results obdtained have shown than the average aerodynanic pre-
perties of & satellite are of the same form as those obtained in chapter 4
for statlonary flow coeditions The average sevedysamic propetiles ave
found alsc 1o de strongly dependent upen the parameters «f Uhe gas surflace

(nteraction swdel, ln genszsl, the average setadysamic properies of
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satellites can be expresred in the following form as & functiosm of the para-

meters of the Maxwell sodel.

- /1 A
Cp =8 Bt 3
"'1-,";"{'*"("" l)
L 5.38
E,: _-Cl’aa :z~z‘.1-a, c)
‘.
E, “Da
:k 4
Ll

of = ie ) the spi
whera the zcefliclents A 8, etc., are funciions of the angle L and P

rate parsserer 5, acd alse the Balf sagle ¢ for the come

in a statiomary f{low,

It ts, thevelore, evident thet as for bedle:

AR {te-acrodynanic
the possihility exists sf etiligliog measered, Jveiage wat 3

€ et
properties to obtalr saechilc (aforastion oo the gas—suriace

T iasturalng &
The feasiblilty Ly sssessed (o the weat chapter { perlorming

Yy aesruitic] thwe average aerc-

cuparinant to determine gar sur face poTImeter s

dynamlec properties of sansliites

o [ — [— (- ! ' .
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6. FEASIBILITY OF A SATELLITE EXPERDMENT TO DEYERMINE THE GAS-SURFACE

INTERACTION PARAMETERS AND THE ATMOSPMERIC DENSITY

The results of the preceding chapter have {ndicated clearly the
possibility of utilizing measured ser~dynamic properties of satellites to
obtain (nformation on the gas-surface interaction. The feasidility of
this experimental concept is discussed i(n this chapter

The cbvious advantage of designing a gas-surface (nteraction ex-
periment using satellites {s that a free molecular flov of high velocity
neutral molecules i{s generated dy the motion of the satellite in fts orbit,
As discussed earlier, {2 hes oot deen pussidle te duplicate these flow
conditions in the laboratory. As with all esxperiments, even those per-

formed under supposedly contrelled conditicns, laformatics o

sined on the
gas-surface (nteraction from the asalysls of satellite serodynamic pro-
perties would bde sudject to certain uncortalnties sssociated with the ex-
periment. For satellite experiments of the type proposed in this study,
uneertainties assoclated wizh the 1322 envirooment cowld (afleesnce the

Interpretation aad sccuracy of results. A complite dlscussion of the

88 Jor uncertainties and thele (nfluence on the progesed enperisest la
glven tn the latter part of Ny chapter [— tinge seetlainly
asreciated with the ordital gas-densily o +f maler Lmpes ase ie The
3 sed experiment . this rudie (s disaunne LS ~

The cwusees Fot e weearval srbizal gas—deons e
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in which the drag i{s related to the density by the drag equation given by

Dn;-%a u_zicb
In order to determine the atmospheric deasity o from the drag measurement,
the drag coefficient, CD’ of the body must be known. Due to the lack of

knowledge on the gas-surface (nteraction, an sssumed value of the drag co-

28 From the results

efficient of 2.2 is commonly used to reduce drag data.
of chapters 4 and 5, (t is seen that this assumption could lexd to consider-
able error, perhaps 50% or greater, {n the determination of density depend-
ing upon the asctusl vslues of the gas-surface interaction parameters and the
shape of the body.

It (s spperent from the above discussion that « satellite experi-
ment designed to obtsiz (nfermatisn on the gas-surface interaction must,
also, simultaneously, cbtaia (aformation on the atmospheric density. For

this reason, then, the ssteilite experiments propoced (n this study are ce-

signed to determine the vslsze o! the atmospheric density i~ s3ditioa to

determining the velues of gas-surface interaciion parsmerers.

Tww ¢riteris wee' %o et Lo srder %o wtilire wesasured sero-
dynamie properties of sate.lites te wdtaie (nfnenstlon on (he pasesurfsce
Interactlon and stmmsphes ¢ Secsiy e first 1iteria is that the sum-ev
of secodynemic properiies wessred mnst 3t lespt syesl the mumber of oo
Kinwn quant (tles e S Setern sed The pegead f 0 o7 3 s (Aot the egualles

Pod by ey

[}
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expressing the measured aerodynamic properties in terms of the unknowns
must form an independent set of equations which can then be solved for the
unknowns.

Two general classifications can be made of possible methods of
utilizing satellite data which could satisfy the basic criteria given above.
Thesc classifications of possible =mcthods are:

Method 1: Utilizing data (such as drag) from a number of
differently shaped and/or differently oriented
satellites.

Method 2: Utilizing data on a number of aerodynamic pro=-
perties of a properly designed satellite.

The methods of analysis are similar in both classifications. In Method 1,
data on past or existing satellites would be used while in Method 2 a
satellite {s to be designed for the specific purpose of obtaining informa-
tion on the gas-surfac” interaction. It isx not suggested, however, that
either of the two methods be used exclusively. In fact, as will be pointed
out later, a combination of the twe methods appears desiradble (n terms of
8 long ranzes program to ebtaln (nformet’ on on The as-—surface interection
as a function ¢f the surfice comditions and alse te vhfala (nformation on

the densiiy and ¢ mpesition of the orbital gas enviromment

The procedute, advai: . and 4 sadsantages asseclated with
the two methods ave divc cssed (p The following twe bownn Later in this
chapter the feasidility will de (llustvated of slog Nethod 2 te dotornine
the parameters the Maxwel! wodei and the tmosphe: denalty
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6.1.1. Method 1: Utilization of Data From Satellites of Different Shapes

In chapter 5 it was found that the average aerodynamic properties
of satellites are dependent upon the parameters of the gas-surface inter-
action. In addition, the angle A,which is the angle giving orientation of
the satellite spin axis with respect to orbit was also found to have an
influence on the coefficients of the unknown parameters. These two factors
are to be considered in utilizing data from satellites of different shapes
and orientation in making the measurements.

To begin the discussion of Method 1, consider that, for example,
drag data were available on a spinning disk, a spinning cone (with flat
base) and a non-spinning sphere. Consider that each of these satellite
shapes has the same surfac: properties, are all in the same circular orbit,
and that the gas density is constant over the orbit. Under these considera-
tions and the assumption that the gas-surface interaction is of the Maxwell
type, the drag measurements of the three would provide sufficient informa-
tion for the determination of the parameters Qy» O and p. The fact *hat
the values of o4 aT and p can be determined can be verified from the equa-
tions given in chapter 5 for the spinning disk witk both sides exposed
(Equation 5.18) and the numerical results given for the core-disk satellite
(Equation 5.27). The average drag for a non-spinning sphere would be the
same as that given in chapter 4 for stationary flow, (Equation 4.30). These
thre= equations satisfy both criteria of the experiment, as can be easily
verified. Using the same set of equations one could also verify that two

spinning disks at different angles \ to the orbital plane could also provide

2 system of independent equations when combined with either the cone-disk
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or sphere equations. One can also easily veriry that measurements of drag

on, for example, three different sized spheres would not lead to an indepen-

dent set of equations which could be solved for ad, aT, and p.

The possible experiments discussed above concern the determination
of the parameters of the Maxwell model. The same procedure would be used if
instead the generalized gas-surface interaction model is used. In order to
use the generalized model, numerical methods would have to be employed
throughout the analysis.

The ideal conditions considered above would not occur in practice.
In tihe actual application of Method 1 of using past drag data, assumptions,
which would introduce errors into the analysis, must be made in order to use
data from different satellites. One assumption that may have to be made is
that the gas-surface interaction is the same on all the satellites being used
ia the analysis. Also, in order to analyze data from satellites in non-
circular orbits, an assumed atmospheric density model must be employed. The
same model would also have to be employed in order to use any data from
satellites which are in different orbits. In addition, the satellites would

have to be assumed to be approximated by convex shapes, since there is at

present no adequate method available to analyze concave shapes.

In light of the many assumptions which must be made in the analysis
of existing satellite data, it is concluded that data from a large number of
satellites would have to be analyzed and correlated in order to reduce the
errors introduced by the assumption. The results of such an undertaking
could, however, yield a considerable amount of information not ;nly on the

gas-surface interaction, but also on the validity of the assumptions used,
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such as tlie atmospheric density model.

6.1.2. Method 2: Utilization of Data From a Single Satellite

The design, manufacture and launching of a satellite is an expen-
sive operation and therein is the principal disadvantage to Method 2 in com-
parison to the less expensive analysis of existing data of Method 1. There
are, however, many advantages to a Method 2 analysis which would utilize data
from a satellite which is specifically designed to obtain information on the
gas-surface interaction. The principle advantage would be the accuracy of
results obtained, an accuracy whick in all probability, could not be obtained
in an analysis of past satellites.

In order to illustrate the basis of Method 2, consider the cone-
disk satellite which was analyzed in chapter 5. The average drag ind torque
coefficients of the cone-disk satellite were of the following form in terms

of the parameters oi the Maxwell model.

cp = Al A+ Aaad JI-aT 6.1
ch =B, + B, + Ba"’a Jl-cz,r 6.2
CT = adc 6.3

s

where ED is the average drag coefficient, ET

torque which acts perpendicular to the satellite spin axis (ET will be

is the average coefficient of

P
interpreted later as being the coefficient of either the i'S-or j‘s component
of _orque), and ET is the average coefficient of slow down torque which is
s
in the directioa of the spin axis. The coefficients A
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and C are “nctions of A, &, and K as discussed in chapter 5.
Consider now, that D, TP, and Tg are measurable quantities so that

the following set of equations could be obtained

* 1 2=
D -D/ZUiA -Al. p+AZ pad+A3pdd4/1-aT 6.4
* 1 g =
L “ )
% -TP/ZU:AIK-819+szad B, p oy Vi, 6.5
* i D
=1 s RTR=Cpay 6.6

% %* *

in which D , Tp , and '1‘s are known from measurements. These three equations

satisfy the two basic criteria established previously. Solutions for p, a,,
3

and @, can be obtained analytically in terms of ihe measured quantities D ,

* *
TP , and Ts and the coefficients Al’ Az, etc. These results are

* *cB, +1 " & AB
T A, - DB, + T, (AB, - A;8)

B3 2 6.7
»
st e
ad- * D*CB+AB A_B T* &
T, Gy 3 ¥ (BB - AgB)) T,
* % ¥
-1 *cA +DcB, -T A5, -AB)
T 1- % G 4, ‘e

T E
s

where E = A331 = AIBJ'
The cone-disk satellite is one example in which the aerodynamic
properties do provide equations which satisfy the basic criteria. This is

not generally true of other satellite shapes. For example, the sphere equa-

for the sphere are not inde-
s
pendent. In another example, the equations for the disk with both sides

tions given in chapter 5 show that ET and ET
P

exposed show that ET
P

is zero and therefore the first criteria is not




9 ey e e em bewm N W e R FROFEROTEROTEROREEOTEE

123

satisfied.
As in Method 1, the Maxwell model is used as a convenient example.
The technique of analysis is, however, also applicable to the determination

of the parameters of the generalized model, if numerical methods are employed.

€.2. Accuracy of a Satellite Experiment

The accuracy of determining the gas-surface interaction parameters
and the atmospheric density in a satellite experiment is, of course, depen-
dent upon the accuracy of the measurements of the average satellite aero-
dynamic properties. The accuracy is also dependent, however, on the shape or
shapes of satellites from which data is obtained. For example, if drag
measurements were made on three satellites which differed only slightly from
that of a sphere, a solution would not be possible because even minor errors
in drag measurements would be greatly amplified. These factors are illus-
trated by taking the specific example of the cone-disk satellite used in the
previous section.

The accuracy of determining the unknown parameters 0, ad’ and e
using a cone-disk satellite is dependent upon the accuracy of measuring D*,
TP* and Ts*. An estimate of the errors in the determination of p, ad' and
@, can be made by taking the first partial derivatives of each of the un-
known parameters with respect to D*, TP*, and TS*. Taking the derivatives

of Equation 6.7, 6.8, and 6.9, the following estimation of the errors is

obtained,
B * A, AT * A B, - A.B AT *
o g Bwt, g AN BB A% nw
] DE * T E * d E * N
D P Tp Ts

P ST T L T

i
I
1
4

y—

S Gl i e ed

: (A;B -A7!5:)] AT.*

Assume that the absolute values of th.c measurement errors, ]AD*/D*I,
|ATP*/TP*I and IATB*/T‘*I are all less than or equal to some maximum possible
value of |AH/H|. Then, for the worse case, when all the errors are added, the
maximum possible errors in the determination of p, g and o would be given

by
8py _ 1T - i ™
I <g [lcn Byl + lcrp Ayl + oy A3y - A3’32”] Iy
= Ty
A Ayl + (1 +ay @8, - 48] (15

1
| ===
= o

LIZED B |+ |2 EIP Al + |2ETP A - 26| IS

The quantities multiplying ]Ag—[ on the right hand side of the
above equations represent, for a given IAH/HI, the maximum error which is
associated with the shape and orientation of the satellite. That is, these
quantities vary as a function of the cone half angle 6 and the orientation
of the satellite spin axis with respect to the orbit which is determined by
the angle A. Using numerical methods, the term multiplying lAH/Hl in Equa-
tion 6.15 was evaluated and the results are shown plotted in Figure 6.1 as
a function of A for various values of §.

' Figure 6.1 shows that some A-§ combinations are definitely better
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than others. In fact, for some combinations the coefficient of IM!I)ll be-~
comes large, implying that an experiment employing those A-§ combinationms
would not yield acceptable results. The A~§ combinations which give mini-
mum possible error are, of course, the most desirable. Results similar to
those shown in Figure 6.1 werz also obtained for the error estimates of p

d T
as seen in Equation 6.15. As oy approaches zero, the error in the determina-

and @,. The error in determining @, is directly related to the value of @,

tion of @, would become infinitely large. This is expected since for the

T
Maxwell model the value of oy determines the fraction of reflected force
which is dependent upon the parameter o. Thus, as oy becomes small, the
effect of aI on the force and torque on the satellite is greatly diminished.
= 0, the parameter a'.l. becomes meaningless.

The results shown in Figure 6.1 were obtained using the coeffi-

At ad

cients of the j; component of torque. Results were also obtained using
the i; component of torque. Results were obtained for a wide range of §
values for both cases. These results showed the following in general

1. Utilization of measured values of the js' component of

torque give consistently lower values of maximum possible
error in the determiration of g, @y and aT, as compared
to the results obtained utilizing measurements of the i;
component of torque.

2. Values of A greater than 450 give lower errcr when the |

i’ < nent of torque is utilized while values of A
g CONED q

less than 45° give lower error when the is' component of

torque is utilized.
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3. The error in determining A is significantly different for
using either the i;-or j;-component of torque. Use of the
i;-cnmponent of torque was found to consistently give maxi-
mum error values of at least an order of magnitude greater
than that obtained using the j;-component of torque.

The difference in possible accuracy between using either the i;-
component or the j;-component of torque is best explained by referring to
the numerical results given in Equations 5.27, 5.28, and 5.29. These equa-
tions show that the drag and the i;-component of torque are functionally
similar in their dependence on the unknown p, @y and Gy The j;-component
of torque has, however, a functionally different dependence on the unknowns
than either the drag or slow down torque. Therefore, even though it is
possible to use either the 1;- or j; - components of torque in an experiment,
use of the j;-component of torque is more desirable in terms of the accuracy
of the experiment.

The procedure just outlined can be used to find an optimum satel-
lite design for performing a gas-surface interaction and atmospheric density
experiment. In such an optimization study, factors such as size and weight
requirements. orbital regression effects, and others would be considered in
addition to the satellite shape. Considering only § and A, however, the
cone-disk satellite was found to give a coefficient of ]AM/M| in the range
of 3-5 for each of the error estimates in p, ey and uT. The inherent
accuracy of this experiment is then very good since the errors in the measure-
ments [AH/H] could be made small depending upon the magnitude of the mea-

surable quantities and the measurement techniques employed. In addition, if
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measurements at one altitude could be correlated with those made at other

altitudes, the statistical error values could be made even lower. The cor~
relation of measurements made at different altitudes would require che use
of an assumed atmospheric density model. The magnitude of measurable quan-

ities in a satellite experiment is discussed in the next sectionm.

6.3. Magnitudes of Measurable Quantities in a Satellite Experiment

’ In a satellite experiment such as described above, the quantities
D*, TP*, and Ts* would be determined from measurements made on the orbital
decay rate, the satellite precession rate and the satellite spin decay rate.
An estimate of the magnitudes of these rates can be determined from the ex-
ample results obtained for the cone-disk satellite.
Consider first the determination of D* which contains the drag D.
For the case of circular orbits, assuming that the aititude losses due to
drag effects are small, the decay rate of the orbital radius, T » cen be
approximated by the following expression given in Reference 1,
ﬁ.-wp @2 6.16
rev av ““o’av
where B is the ballistic coefficient Euzllm, m is the mass of the satellite,
. is the average atmospheric gas density at the average orbital radius Tt
The mass m of the satellite is directly proportional to the density Pg of the
material used to comstruct the satellite. Let the proportionality be ex-
pressed as

* -
m=p r, A 6.17

- %
where A :3 the reference area of the satellite and r, has units of length and
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is the proportionality factor determined by the design of the satellite.

Using Equatior 6.17 and the definition of B, Equation b.16 becomes, dropping

the "av" subscripts on p and T

o * ro - P%
-;—/rev = -D % = ~2n Cp = 6.18
° pTs (R

The convenient non-dimensional form of Equation 6.18 can also be
obtained for the precession rate and slow down rate of the satellite. For
higi: spin rates, the Euler equations for the dynamics of a spiuning body

under the action of external torques reduce to

T, =I00 . 6.19
8 s

=10 6.20
-] s

T o= L@+ 6 ) 6.21
8 s

where Il is the moment of inertia about an axis perpendicular to the spin
axis, 12 is the moment of inertia about the spin axis, 0 is the spin rate
and the terms wj/, Wy s and @ represent the components of precession rate
of the spinning ;ody.s Assume ;or tne purposes of the present study that the
satellite can be designed to be iso-inertial, I1 = 12, regardless of the

external shape. In terms of the notation of the preceding chapters, the

precession rate wy ¢ is equal to i. Therefore, Equation 6.20 becomes
s

OA/xev = 2m Ti;/nllwo 6.22

vhere o, is the angular velocity of the orbit. The terms in Equation 6.22

can be expressed as follows

-
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and

substituting for Ej" w,» and Q into Equation 6.22, the following is obtained
s

CT i
s Ar
K P % 211

bLA/rev = 2m 6.23

Similar to what was done for the drag case, assume that the moment of inertia
is proportional to the material density of the satellite, Pg- Let

2 *
I1 - I,

(SIS

Py AT 6.24

% -

where T, has units of length and is the proportionality factor. The quan-
* *

tity r, may or may not be equal to the similar term r, which was used for

the drag equations. Substituting Equation 6.24 in Equation 6.23, the follow-

ing is obtained

o )
=27 : 6.25

* *
PsT2 LS PsT2

*
A\/rev = T
P

In a similar fashion, the satellite spin decay rate is found to be
3
s Ty pr

s—nlrev =" o 6.26

O = 2n
e psr3* B psr3*
where the term r3* would be equal to rz* for an iso-inertial body.

Summarizing, the rates of change in the measurable quantities of a
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satellite experiment are found expressible fa the following non-dimensional

forms.
Ar = pE
— & s o
z /rev = 2nCy pr * 6.27
[} 8 1
G,
T;pro
O\/rev = 2nr ¥ poror 6.28
i
T i
k. pr
o] - s o
a /rev = 2m X Pats 6.29

The products psrl*, psr *, and psr3s* are quantities which may be
controlled by the satellite design. In general, large solid satellites would
have psr* values which are large whereas light satellites would have small
values of psr*. In terms of crders of magnitude, an upper limit for a large
solid satellite would be in the order of 100 zm/cmz. A lower limit for p r*
could be 10-2 3m/cm2 for @ thin walled hollow satellite.

The product p Ty varies, of course, with the orbital altitude of
the satellite. Figure 6.2 shows the variation of p r, for a high, low, and
medium density atmosphere versus the orbital altitude h, where h-ro—re; r, =
(radius of Earth).

Using some representative values of ED’ EI ) and ET 4 which were
obtained in the numerical studies of chapter 5 on thesccne-diskssacelliCe,
the plots given in Figures 6.3, 6.4, and 6.5 show how the measurable quan-

tities vary with altitude h, for pst* = 1. Figure 6.3 can also be inter-

preted in terms of At/T, the rate of change in the period of the orbit. The

rate of change in period is related to the altitude decay rate by the

S —————
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Figure 6.2. High, low, and medium atmospheric density variation with

altitude (from tables in Reference 29).
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Figure 6.3. Relative average altitude loss per (circular) orbit for a

cone-disk satellite.
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Figure 6.4. Relative average angular precession of spin-axis of a cone-
disk satellite per (circular) orbit.
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following equation,

A‘l’./r .é ﬁ/te ":”
I =g R e ¥

The results shown in Figure 6.4 are given in terms of sec of arc/rev.

The results given in Figures 6.3, 6.4, and 6.5, clearly illustrate
the feasibility of proposed experimental techniques in terms of the magnitude
of measurable quantities. In fact, the measurements could all be made using
an optical technique such as that proposed by the Coordinated Science Labora-
:ox‘y.u’13 The advantage to an optical readout system is that the satellite
itself could be completely passive in that sunlight reflected off the surface
of the satellite can be used to determine the orientation of the spin axis
anag thus be able to determine the precession rate of the satellite spin axis.
The technique proposed by CSL is fully described in the References 12 and 13.
The results of this extensive study made by CSL of the feasibility of the
optical readout technique indicate that precession rates of the order shown
in Figure 6.4 would be well within che capabilities of the optical technique.
Satellite spia rate data could be obtained directly from the observations of
reflected sunlight from the satellite. The optical technique is, of course,

a standard method of obtaining orbital drag data.

In the preceding discussions, a satellite experiment to determine
the parameters of the Maxwell model was studied mainly to illustrate its
feasibility. However, the accuracy of the interpretation of the measdzements
depends upon how well the assumed model approximates the actual reflection

phenomena .
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In order to illustrate how, for a special case, erroneous results
could be obtained, take an experiment in which the measurements are inter-
preted in terms of the parameters of the laxwell model. As an extreme case
consider that the actual reflection process is a perfect backscatter. That
is, irrespective of the angle, §, at which the molecules impinge on the sur-
face, the molecules are always reflected back in the same direction. Perfect
backscatter is a type of reflection which cannot be approximated by the Max-
well model (or the Schamberg model eitler).

The procedure outlined for an experiment using a cone-disk satel-
lite would yield values of @y °'1:’ and p for this extreme case of perfect
backscatter; however, it can be shown that &, and ¢,

d T
and the gas-density would be twice its actual value.

would be equal to one

The above example serves to illustrate the importance of inter-
preting the satellite measurements in terms of a model, such as the gen-
eralized model, which can cover a wide range of possible gas-surface inter-
actions. In the range of possible reflections between specular and diffuse,
the resuluis of chapter 4 indicate that use of either the generalized model
or the Maxwell model could be expected to yield results which could reason-
ably approximate the actual reflection process. For the case of backscatter
or over specular reflections, however, use of either the Maxwell or the
Schamberg model could not be expected to yield valid results on the gas
surface interaction parameters. The Nocilla model also could give erroneous
results if the actual distribution function were far from the drifting Max-
wellian assumed by Nocilla.

Solutions for the unknowns when the generalized model is used
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must be obtained using numerical methods gince in generasl the resulting
equations are trigometric in the parameter Pj‘ Trigometric equations can,
however, lead to multiple solutions for a given set of messurements. If
multiple solutions are obtained, then additionsl experiments would have to
be performed which are designed to detect the correct solution. It musc be
concluded that, even considering the possibility of multiple solutions, the
use of the generalized model in the interpretation of satellite data is to
be favored over the use of a given particular model. More specific models
could be employed after the analysis using the generalized model has indi-
cated the general character of the reflection process.

In order to illustrate the application of the generalized model,

consider a reflection which is a d to be d of three separate
beams; beam 1 (j=1) is in the backscatter direction (!‘1'2), beam 2 (j=2)
is normal to the surface (Pz-l), and beam 3 (j=3) is in the specular
direction (23-0) (see Figure 6.8). The effect on the drag of a body due
to a reflection of this type can be determined from the equations given
in section 4.3.1. For the values of ?j given above, the drag coeff?cieut
for a flat plate, cylinder, cone and sphere are given by,

(CD)phte = gin es 2+ ZcJ'[‘/l.-n'1 + 2 sin Gs az,/l—uz
- 2 cos 29 c.v3\/1-<:r3 6.31 |
- — T o A2 o o
) o yitning] 12 * 2 pfieay + o/ loaGEES ayli-a, 6.32

(CD)cone =2+ 25‘1,‘/14;'1 + 2 sin § 02./1—a2

- 2 cos 28 oy/l-a, 6.33
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(cD)sphere 26 2‘71."/1"‘:'1 * 3 %% 1*2 6.34

[
These results serve to illustrate the statement made at the end of chapter 2 i
|

|

that the aerodynamic pfoperties are specified by a choice of only two guan-
tities for each reflected beam; Pj and cj‘/l_-&;. The above equations show ‘
that the quantities °_1 and ,,/m; always appear as the product in the ex- ‘
pressions for aerodynamic properties and could therefore be considered as a \
single parameter.

The results given in Equations 6.31, 6.32, 6.33, and 6.34 also
illustrate that, without prior knowledge of either Gj or cxj, only the quan-
tities cf/l—-a_j could be determined in an experiment which utilizes measured
aerodynamic properties of convex shapes. In application to satellite experi-
ments then, if no assumptions are made on the distribution function of re-
flected molecules (such assumptions are made in the Maxwell, Schamberg and
Nocilla models), the resalts of a satellite experiment using convex shapes
are limited to obtaining information on the ::mber of reflected beam com-
ponents, the magnitude of each component, and the direction of each compor
nent. This information, even though limited, would be sufficient to deters
mine the aerodynamic drag, lift, and torque properties of any convex shaped
body, spinning or non-spinning. Such information would also be utilized to
design future satellite experiments to obtain more refined information cn
the gas surface interaction. Although such shapes are not considered in
this study, it is proposed that concave shapes could be utilized to obtain
information on the distribution function ‘of reflected mlecules.;incé' ﬂ;e
aerodynamic properties oé thesé shaﬁes are dependent upon the properties of

reflected distribution.
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6.5, Significance of Satellite Experiments to Determine Gas-Surface Inter-
action Parameters and the Atmospheric Density

The examples given in this chapter have employed idealized con-
ditions such as circular orbits and constant density which would not be the
case in an actual experiment. As mentioned in the introduction to this
chapter, a number of uncertainties are associated with satellite experi-
ments which can affect the interpretation of results. Two of the major un-
certainties have already been adequately discussed; the uncertainty associ-
ated with the atmospheric density was discussed in the intrcduction and the
uncertainties associated with the gas-surface interaction model has been
discussed in the preceding section. The significance of performing a satel-
lite experiment in light of some additional uncertainties will be discussed
here. To be considered are uncertainties concerning the condition of the
satellite surface (ie. degiee of surfzce contamination by adsorbed gases,
composition of surface-adsorbed gases, and roughnesc of surface), composi-

tion of the atmosphere, and variation of atmospheric density with altitude.

rfac ndit
The gas-surface interaction is known to depend upon the degres
and composition of adsorbed surfaces (see, for example, the experimental
results given in Reference 30) which, ir the satellite enviromment, is not
well known. The satellite environment in some respects acts like a cleans-
ing environment in that the very high vacuum combined with the effects of

high energy solar and cosmic rays tend to rid the surface of trapped gas

molecules. On the other hand, the constant bombardment of high velocity gas

r '
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molecules as the satellite travels in its orbit causes the surface to again
be contaminated with trapped gas molecules. The cleansing and contsminating
processes take place continuously. The equilibrium conditions if reached
have not as yet been determined. This uncertainty enters the interpretation
of results when measurements made at one orbital altitude are correlated

to those made at other altitudes.

Instead of treating the surface conditions as uncertainties in the
experiment, it is suggested that a satellite experimeat be designed to ob-
tain information on the uncertainties. One possible approach is to first
contaminate the satellite surface with a known contamination which would be
expected to degas at a known rate in the relative vacuum of the orbital en-
vironment. The degassing rate could then be correlated with the measured
rates of change in the aerodynamic properties of the satellite to determine
the effect of contamination on the gas-surface interaction. That such an
approach would be feasible is indicated first by the results obtained in
this chapter on the possible accuracy of a satellite experiment. Secondly,
in some preliminary studies performed by Cohen31, it was concluded that
contaminates such as water vapor on a metal surface could be expected to
degas down to l/e of the initial surface coverage in a time of about 5 to
10 weeks. This rate of change estimate combined with the expected accuracy
of the satellite measurements indicates that such an experimenc may be
feasible.

The effects of other surface properties on the gas—surface inter-
action could also be studied by making accurate measurements of the aero-

dynamic properties as a function of time and then correlating the results
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with known variations of th: environmental conditions. For example, for
satellites with long lifetimes, the satellite surface could be expected to
become rougher with time due to the bombardment of micrometeorites, dust
particles and high enme:gy cosmic rays (see for example Reference 32).

The effect of the gas-surface interaction on surface roughness could then be
assessed by correlating changes in the satellite aerodynamic properties with
what is known about the rougheningeffects of the space environment. Data
from satellites which have changing, or controlled surface temperatures
could be utilized in a similar manner to obtain information on the effect

of surface temperature.

6.5.2. Consideration of the Composition of the Atmosphere

The composition of the earth's atmosphere is known to vary con-
siderably with altitude and solar activity (see for example Reference 29).
The average molecular weight at 1000 km. varies from 1.47 for a low-dencity
atmosphere to a value of 15.04 for a high density atmosphere. At 300 km.
the variation js from 16.89 to 22.46 for the low and high density atmos
spheres. (Values of molecular weight obtained from Reference 29). As a
satellite orbit decays, then, the species of gas molecules which impinge
on the satellite surface will change in concentration. The change in gas-
species concentration with altitude enters into the interpretation of re-
sults when measurements made at one altitude are correlated to those made
at other altitudes. Two uncertainties are involved; the gas-surface inter-

action as a function of gas-species concentration and the concentration of

gas-species as a function of altitude.
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As with the uncertainties in surface conditions, it is proposed
here that the uncertainties in the atmospheric composition be considered un-
known and be determined by satellite experiments. One possible approach is
to consider each species of gas separately. That is, instead of the average
density of the atmosphere, p, consider that the free stream density is com-
posed of a separate density, Py for each species where p = 291. In addi-
tion, for each species of gas, i, consider the gas-surface interaction to be
determined by parameters of the generalized model (Gr/l‘d and (P ) For

i

example, the drag of a non-spinning sphere would then be given by

Dsghere i
=Zp, 2+E (cf/l-u [
i 3

s % L

Expressions such as Equation 6.31 could also be developed for other satellite

A(l-cos Aliseosis Py (¢4 ) )]}

(Pj) (4- (P )

6.35

shapes. Then, using the same procedures as outlined earlier in this chapter,
it is proposed that the unknowns pi’(Pj)i' and (v:rj.‘/l—_cxi)1 could be deter-
mined from measurements made on the aerodynamic properties of satellites.
Certainly for such a large number of unknowns, a single satellite experiment
would not provide sufficient information for the determinations. However, a
number of properly designed satellites could be utilized along with a care-
ful re-evaluation of past drag data to obtain a considerable amount of infor-
mation on the unknowns. The values of Py could be correlated with models

of the variation in the composition of the atmosphere to determine which
model, if.gny, gives the most consistent results. Such an analysis would
then provide information on both the atmospheric composition and the gas=

surface interaction as a function of gas-species.
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Va of A ic Density Models

In the determination of the atmospheric density, a model of the
relative varistion of atmospheric density with altitude must be assumed.
Such @ model must be utilized in the analysis of elliptic orbit’s and also
in correlating measurements mede at one altitude with those made at other
altitudes. An error in the determination value of p is then introduced due
to the uncertainty associated with the assumed mbdel of the atmosphere.

As with the other uncertainties in a satellite experiment, it is
suggested that this uncertainty could also be removed by a number of
satellite experiments and re-evaluation of past drag data. The procedure

would be much che same as outlined in the previous section on atmospheric

composition models.
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7. SUMMARY AND CONCLUSIONS

A generalized model of the gas-surface interaction was developed
to cover a wide range of possible interactions. This model was incorporated
into the aerodynamic equations of spinning convex bodies in a free molecule
flow in order to study fully the influence of the gas-surface interaction on
the aerodynamic properties of satellites in this flow regime.

Apalysis of the aerodynamic properties of four spinning bodies,
(disk, cylinder, cone, and sphere) at angles of attack revealed the strong
influence of the gas-surface interaction, especially on the torque properties.
The aerodynamic torque acting on a body in free molecular flow was found to
be caused by 1) the moment of drag lnci 1ift forces about the center of mass
of the body and 2) forces tangent to the surface induced by the spinning of
the body. Aerodynamic torques of the first type are experienced by both
spinning and non-spinning satellites and are well known. Aerodynamic torques
of the second type which are spin induced have components both parallel and
perpendicular to the spin axis of the body. The component of torque parallel
to the spin axis would cause the expected decay in the spin rate of a spin-
ning body. The components of torque perpendicular to the spin axis would
cause a gyroscopic precession. The spia induced torque on a body was found
to be more strongly dependent on the gas-surface interaction than aerodynamic
torques of the first type.

Spin induced effects were also found in the aerodynamic drag and

lift properties of spinning bodies at angles of attack. In general, it was

found that spinning bodies experience higher values of drag and lift than do
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oon-spinning bodies. Also of interest is a lateral force experienced by
s#pinning bodies in free molecular flow which is entirely spin induced. The
#pin induced lasteral force was found to be also strongly dependent on the
ges-purface interaction, as for the spin induced aerodynamic torques. The
gerodynamic, spin induced leteral force is analogous, but opposite in direc-
tion, to the Magnus effect on spinning bodies in viscous flow.

The develop of the lized g rface interaction model

and the analysis of aerodynamic properties of spinning bodies formed the
basis for proposing satellite experiments to obtain information on the gas-
surfece interaction as well as the orbital atmospheric density. It was

found thut the average serodynamic properties of spinning satellites are
strongly ;epandent on the parameters of a given gas-surface interaction model.
It is, therefore, proposed that the measured gverage aerodynamic properties
of zpinning sstellites be utilized to determine precise values of the gas-
surface interaction parameters and the orbital gas density. The preliminary
phage of the study of the feasibility of these satellite experiments was
conducted. This phase of the study covered 1) the consideration of schemes
utilizing the merodynamic properties of satellites of various shapes and
orientations, 2) the assessment of the accuracy of determining the gas sur-
face-interaction parameters and the orbital gas density, 3) the estimate of
the magnitude of meesurable quantitites in a satellite experiment, and 4)

the investigation of the possible effects on accuracy introduced by uncertain-
ties in the apace environment and satellite surface conditions. On the basis
of these results, it was established that the proposed satellite experiments

gre feasible end could provide sigmificant information on both the gas-surface
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interaction at satellite velocities and the near-esrth atwosphere.

Due to the considerable uncertainties associsted with the gesesyr-
face interaction at satellite velocities, it was found that ché geacrelized
model of the gas-surface interaction is pecesssry in the interpretation of
results of the proposed satellite experiments. Since the serodynsmic pro-
perties of convex bodies in & free mol. flow are nog dependent on the spe-
cific form of the distribution of reflected molecules, gas-surface inter-
action models which incorporate a specific distribution function are mot only
unnecessary but also undesirable in that considerable error can be introduced
in the interpretation of serodynamic measurements by using such models. For
this reason, the use of the generalized model developed in this study is pre-
ferred since no assumption was made on the distribution of reflected molecules
other than the existance of an average velocity and direction. It was sug-
gested that the generalized model could also be applied to the interpretation
of results obtained from laboratory experiments in order to parameterize in.

a general manner the results of molecular beam studies. The parameterization
of these results would facilitate the comparison of the various results and
could serve as a basis for suggesting more precise ges-surface interaction
wmodels. Laboratory experiments on gas-surface interaction which measure
forces and torques are particularly suitable in using the generalized wodel
to interpret the results.

The study of feasibility of the satellite éxperiments proposed in
this study has been supported by the National Aeronautics and Space Adminis~
tration at the George Marshall Space Flight Center. The aerodynamic pro-

perties of near-earth satellites are of major importance in determining both
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the lifetime of a satellite and the motion of the satellite about its center
of mass. Since NASA ig planning in the future to orbit satellites of larger
size (such as manned space stations) and satellites requiring greater orien-
tation stability than satellites of the past, there is an urgent need for
precise knowledge of the character of the gas-surface interaction zad the
composition of the atmosphere in order to properly and economically design
these future satellites. For this reason, NASA is considering an extensive
experimental program called Project 0DYSSEY33’31' which is planned to obtain
information on the gas.surface interaction and the orbital environment by a
number of satellite experiments. The techniques of analysis developed and
the results obtained in this study have direct application to the design of
satellite experiments and the interpretation of results of these experiments,
as well as the interpretation of existing satellite data, with the objective
to obtain information on the gas-surface interaction and the atmospheric

composition.
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